
Making Sense of NoSQL
A GUIDE FOR MANAGERS

AND THE REST OF US

DAN MCCREARY
ANN KELLY

M A N N I N G
SHELTER ISLAND

Licensed to Arti Pandey <arti.pandey@dreamtechpress.com>

vii

brief contents
PART 1 INTRODUCTION ..1

1 ■ NoSQL: It’s about making intelligent choices 3

2 ■ NoSQL concepts 15

PART 2 DATABASE PATTERNS .. 35

3 ■ Foundational data architecture patterns 37

4 ■ NoSQL data architecture patterns 62

5 ■ Native XML databases 96

PART 3 NOSQL SOLUTIONS ..125

6 ■ Using NoSQL to manage big data 127

7 ■ Finding information with NoSQL search 154

8 ■ Building high-availability solutions with NoSQL 172

9 ■ Increasing agility with NoSQL 192

PART 4 ADVANCED TOPICS ..207

10 ■ NoSQL and functional programming 209

11 ■ Security: protecting data in your NoSQL systems 232

12 ■ Selecting the right NoSQL solution 254

Licensed to Arti Pandey <arti.pandey@dreamtechpress.com>

Licensed to Arti Pandey <arti.pandey@dreamtechpress.com>

ix

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxii

PART 1 INTRODUCTION...1

1 NoSQL: It’s about making intelligent choices 3
1.1 What is NoSQL? 4
1.2 NoSQL business drivers 6

Volume 7 ■ Velocity 7 ■ Variability 7 ■ Agility 8

1.3 NoSQL case studies 8
Case study: LiveJournal’s Memcache 9 ■ Case study: Google’s
MapReduce—use commodity hardware to create search indexes 10
Case study: Google’s Bigtable—a table with a billion rows and a million
columns 11 ■ Case study: Amazon’s Dynamo—accept an order 24
hours a day, 7 days a week 11 ■ Case study: MarkLogic 12
Applying your knowledge 12

1.4 Summary 13

Licensed to Arti Pandey <arti.pandey@dreamtechpress.com>

x CONTENTS

2 NoSQL concepts 15
2.1 Keeping components simple to promote reuse 15
2.2 Using application tiers to simplify design 17
2.3 Speeding performance by strategic use of RAM, SSD,

and disk 21
2.4 Using consistent hashing to keep your cache current 22
2.5 Comparing ACID and BASE—two methods of reliable

database transactions 24
RDBMS transaction control using ACID 25 ■ Non-RDBMS
transaction control using BASE 27

2.6 Achieving horizontal scalability with database
sharding 28

2.7 Understanding trade-offs with Brewer’s CAP theorem 30
2.8 Apply your knowledge 32
2.9 Summary 33

2.10 Further reading 33

PART 2 DATABASE PATTERNS 35

3 Foundational data architecture patterns 37
3.1 What is a data architecture pattern? 38
3.2 Understanding the row-store design pattern used in

RDBMSs 39
How row stores work 39 ■ Row stores evolve 41
Analyzing the strengths and weaknesses of the row-store pattern 42

3.3 Example: Using joins in a sales order 43
3.4 Reviewing RDBMS implementation features 45

RDBMS transactions 45 ■ Fixed data definition language and
typed columns 47 ■ Using RDBMS views for security and access
control 48 ■ RDBMS replication and synchronization 49

3.5 Analyzing historical data with OLAP, data warehouse, and
business intelligence systems 51
How data flows from operational systems to analytical systems 52
Getting familiar with OLAP concepts 54 ■ Ad hoc reporting using
aggregates 55

Licensed to Arti Pandey <arti.pandey@dreamtechpress.com>

xiCONTENTS

3.6 Incorporating high availability and read-mostly
systems 57

3.7 Using hash trees in revision control systems and database
synchronization 58

3.8 Apply your knowledge 60
3.9 Summary 60

3.10 Further reading 61

4 NoSQL data architecture patterns 62
4.1 Key-value stores 63

What is a key-value store? 64 ■ Benefits of using a key-value
store 65 ■ Using a key-value store 68 ■ Use case: storing web
pages in a key-value store 70 ■ Use case: Amazon simple storage
service (S3) 71

4.2 Graph stores 72
Overview of a graph store 72 ■ Linking external data with the
RDF standard 74 ■ Use cases for graph stores 75

4.3 Column family (Bigtable) stores 81
Column family basics 82 ■ Understanding column family
keys 82 ■ Benefits of column family systems 83
Case study: storing analytical information in Bigtable 85
Case study: Google Maps stores geographic information in
Bigtable 85 ■ Case study: using a column family to store user
preferences 86

4.4 Document stores 86
Document store basics 87 ■ Document collections 88
Application collections 88 ■ Document store APIs 89
Document store implementations 89 ■ Case study: ad server with
MongoDB 90 ■ Case study: CouchDB, a large-scale object
database 91

4.5 Variations of NoSQL architectural patterns 91
Customization for RAM or SSD stores 92 ■ Distributed stores 92
Grouping items 93

4.6 Summary 95
4.7 Further reading 95

Licensed to Arti Pandey <arti.pandey@dreamtechpress.com>

xii CONTENTS

5 Native XML databases 96
5.1 What is a native XML database? 97
5.2 Building applications with a native XML database 100

Loading data can be as simple as drag-and-drop 101 ■ Using
collections to group your XML documents 102 ■ Applying simple
queries to transform complex data with XPath 105
Transforming your data with XQuery 106 ■ Updating
documents with XQuery updates 109 ■ XQuery full-text
search standards 110

5.3 Using XML standards within native XML databases 110
5.4 Designing and validating your data with XML Schema

and Schematron 112
XML Schema 112 ■ Using Schematron to check document
rules 113

5.5 Extending XQuery with custom modules 115
5.6 Case study: using NoSQL at the Office of the Historian

at the Department of State 115
5.7 Case study: managing financial derivatives with

MarkLogic 119
Why financial derivatives are difficult to store in RDBMSs 119
An investment bank switches from 20 RDBMSs to one native XML
system 119 ■ Business benefits of moving to a native XML
document store 121 ■ Project results 122

5.8 Summary 122
5.9 Further reading 123

PART 3 NOSQL SOLUTIONS125

6 Using NoSQL to manage big data 127
6.1 What is a big data NoSQL solution? 128
6.2 Getting linear scaling in your data center 132
6.3 Understanding linear scalability and expressivity 133
6.4 Understanding the types of big data problems 135
6.5 Analyzing big data with a shared-nothing

architecture 136
6.6 Choosing distribution models: master-slave versus

peer-to-peer 137

Licensed to Arti Pandey <arti.pandey@dreamtechpress.com>

xiiiCONTENTS

6.7 Using MapReduce to transform your data over distributed
systems 139
MapReduce and distributed filesystems 140 ■ How MapReduce
allows efficient transformation of big data problems 142

6.8 Four ways that NoSQL systems handle big data
problems 143
Moving queries to the data, not data to the queries 143 ■ Using
hash rings to evenly distribute data on a cluster 144 ■ Using
replication to scale reads 145 ■ Letting the database distribute
queries evenly to data nodes 146

6.9 Case study: event log processing with Apache Flume 146
Challenges of event log data analysis 147 ■ How Apache Flume
works to gather distributed event data 148 ■ Further
thoughts 149

6.10 Case study: computer-aided discovery of health care
fraud 150
What is health care fraud detection? 150 ■ Using graphs and
custom shared-memory hardware to detect health care fraud 151

6.11 Summary 152
6.12 Further reading 153

7 Finding information with NoSQL search 154
7.1 What is NoSQL search? 155
7.2 Types of search 155

Comparing Boolean, full-text keyword, and structured search
models 155 ■ Examining the most common types of search 156

7.3 Strategies and methods that make NoSQL search
effective 158

7.4 Using document structure to improve search quality 161
7.5 Measuring search quality 162
7.6 In-node indexes versus remote search services 163
7.7 Case study: using MapReduce to create reverse

indexes 164
7.8 Case study: searching technical documentation 166

What is technical document search? 166 ■ Retaining document
structure in a NoSQL document store 167

Licensed to Arti Pandey <arti.pandey@dreamtechpress.com>

xiv CONTENTS

7.9 Case study: searching domain-specific languages—
findability and reuse 168

7.10 Apply your knowledge 170
7.11 Summary 170
7.12 Further reading 171

8 Building high-availability solutions with NoSQL 172
8.1 What is a high-availability NoSQL database? 173
8.2 Measuring availability of NoSQL databases 174

Case study: the Amazon’s S3 SLA 176 ■ Predicting system
availability 176 ■ Apply your knowledge 177

8.3 NoSQL strategies for high availability 178
Using a load balancer to direct traffic to the least busy
node 178 ■ Using high-availability distributed filesystems
with NoSQL databases 179 ■ Case study: using HDFS as
a high-availability filesystem to store master data 180
Using a managed NoSQL service 182Case study: using
Amazon DynamoDB for a high-availability data store 182

8.4 Case study: using Apache Cassandra as a high-availability
column family store 184
Configuring data to node mappings with Cassandra 185

8.5 Case study: using Couchbase as a high-availability
document store 187

8.6 Summary 189
8.7 Further reading 190

9 Increasing agility with NoSQL 192
9.1 What is software agility? 193

Apply your knowledge: local or cloud-based deployment? 195

9.2 Measuring agility 196
9.3 Using document stores to avoid object-relational

mapping 199
9.4 Case study: using XRX to manage complex forms 201

What are complex business forms? 201 ■ Using XRX to
replace client JavaScript and object-relational mapping 202
Understanding the impact of XRX on agility 205

Licensed to Arti Pandey <arti.pandey@dreamtechpress.com>

xvCONTENTS

9.5 Summary 205
9.6 Further reading 206

PART 4 ADVANCED TOPICS...207

10 NoSQL and functional programming 209
10.1 What is functional programming? 210

Imperative programming is managing program
state 211 ■ Functional programming is parallel transformation
without side effects 213 ■ Comparing imperative and functional
programming at scale 216 ■ Using referential transparency to
avoid recalculating transforms 217

10.2 Case study: using NetKernel to optimize web page content
assembly 219
Assembling nested content and tracking component
dependencies 219 ■ Using NetKernel to optimize component
regeneration 220

10.3 Examples of functional programming languages 222
10.4 Making the transition from imperative to functional

programming 223
Using functions as a parameter of a function 223 ■ Using
recursion to process unstructured document data 224 ■ Moving
from mutable to immutable variables 224 ■ Removing loops and
conditionals 224 ■ The new cognitive style: from capturing state to
isolated transforms 225 ■ Quality, validation, and consistent unit
testing 225 ■ Concurrency in functional programming 226

10.5 Case study: building NoSQL systems with Erlang 226
10.6 Apply your knowledge 229
10.7 Summary 230
10.8 Further reading 231

11 Security: protecting data in your NoSQL systems 232
11.1 A security model for NoSQL databases 233

Using services to mitigate the need for in-database security 235
Using data warehouses and OLAP to mitigate the need for
in-database security 235 ■ Summary of application versus
database-layer security benefits 236

Licensed to Arti Pandey <arti.pandey@dreamtechpress.com>

xvi CONTENTS

11.2 Gathering your security requirements 237
Authentication 237 ■ Authorization 240 ■ Audit and
logging 242 ■ Encryption and digital signatures 243
Protecting pubic websites from denial of service and injection
attacks 245

11.3 Case Study: access controls on key-value store—
Amazon S3 246
Identity and Access Management (IAM) 247 ■ Access-control lists
(ACL) 247 ■ Bucket policies 248

11.4 Case study: using key visibility with Apache
Accumulo 249

11.5 Case study: using MarkLogic’s RBAC model in secure
publishing 250
Using the MarkLogic RBAC security model to protect
documents 250 ■ Using MarkLogic in secure publishing 251
Benefits of the MarkLogic security model 252

11.6 Summary 252
11.7 Further reading 253

12 Selecting the right NoSQL solution 254
12.1 What is architecture trade-off analysis? 255
12.2 Team dynamics of database architecture selection 257

Selecting the right team 258 ■ Accounting for experience
bias 259 ■ Using outside consultants 259

12.3 Steps in architectural trade-off analysis 260
12.4 Analysis through decomposition: quality trees 263

Sample quality attributes 264 ■ Evaluating hybrid and cloud
architectures 266

12.5 Communicating the results to stakeholders 267
Using quality trees as navigational maps 267 ■ Apply your
knowledge 269 ■ Using quality trees to communicate project
risks 270

12.6 Finding the right proof-of-architecture pilot project 271
12.7 Summary 273
12.8 Further reading 274

index 275

Licensed to Arti Pandey <arti.pandey@dreamtechpress.com>

