brief contents

N OO 0o A

10
11

12

Java 8: why should you care? 3
Passing code with behavior parameterization 24

Lambda expressions 39

Introducing streams 77
Working with streams 92
Collecting data with streams 123

Parallel data processing and performance 158

Refactoring, testing, and debugging 185
Default methods 207
Using Optional as a better alternative to null 225

CompletableFuture: composable asynchronous
programming 245

New Date and Time API 273

13
14
15
16

BRIEF CONTENTS

Thinking functionally 291

Functional programming techniques

Blending OOP and FP: comparing Java 8 and Scala 329

305

Conclusions and where next for Java 344

Miscellaneous language updates 358

Miscellaneous library updates

362

Performing multiple operations in parallel

on astream 370

Lambdas and JVM bytecode

379

contents

preface xvii

acknowledgments xix

about this book xxi

about the authors xxv

about the cover illustration xxvii

Java 8: why should you care? 3

1.1

1.2

1.3

1.4
1.5
1.6

Why is Java still changing? 5

Java’s place in the programming language ecosystem 6
Stream processing 7 = Passing code to methods with
behavior parameterization 9 = Parallelism and shared
mutable data 9 = Java needs to evolve 10

Functions in Java 11

Methods and lambdas as first-class citizens 12 = Passing code:
an example 13 = From passing methods to lambdas 15

Streams 16
Multithreading is difficult 17
Default methods 20
Other good ideas from functional programming 21
Summary 23

CONTENTS

Passing code with behavior parameterization 24
2.1 Coping with changing requirements 25

First attempt: filtering green apples 25 = Second attempt:
parameterizing the color 26 = Third attempt: filtering with
every attribute you can think of 27

2.2 Behavior parameterization 27
Fourth attempt: filtering by abstract criteria 29

2.3 Tackling verbosity 32

Anonymous classes 33 = Fifth attempt: using an
anonymous class 33 = Sixth attempt: using a lambda
expression 35 = Seventh attempt: abstracting

over List type 36

2.4 Real-world examples 36

Sorting with a Comparator 36 = Executing a block of
code with Runnable 37 = GUI event handling 38

2.5 Summary 38

Lambda expressions 39
3.1 Lambdas in a nutshell 40
3.2 Where and how to use lambdas 43
Functional interface 43 = Function descriptor 45
3.3 Putting lambdas into practice: the execute

around pattern 47

Step 1: Remember behavior parameterization 47

Step 2: Use a functional interface to pass behaviors 48

Step 3: Execute a behavior! 48 = Step 4: Pass lambdas 48
3.4 Using functional interfaces 50

Predicate 50 = Consumer 50 % Function 51

3.5 Type checking, type inference, and restrictions 56

Type checking 56 = Same lambda, different functional
interfaces 57 = Type inference 58 = Using local variables 59

3.6 Method references 60

In a nutshell 60 = Constructor references 63

3.7 Putting lambdas and method references into practice! 65

Step 1: Pass code 65 = Step 2: Use an anonymous class 66
Step 3: Use lambda expressions 66 = Step 4: Use
method references 67

CONTENTS

3.8 Useful methods to compose lambda expressions 67

Composing Comparators 67 = Composing Predicates 68
Composing Functions 68

3.9 Similar ideas from mathematics 70
Integration 70 = Connecting to Java 8 lambdas 72
3.10 Summary 72

Introducing streams 77
4.1 What are streams? 78
4.2 Getting started with streams 81
4.3 Streams vs. collections 84
Traversable only once 86 = External vs. internal iteration 86
4.4 Stream operations 88

Intermediate operations 89 = Terminal operations 90
Working with streams 90

4.5 Summary 91

Working with streams 92
5.1 Filtering and slicing 93

Filtering with a predicate 93 = Filtering unique elements 94
Truncating a stream 94 = Skipping elements 95

5.2 Mapping 96

Applying a function to each element of a stream 96
Flattening streams 97

5.3 Finding and matching 100

Checking to see if a predicate matches at least one element 100
Checking to see if a predicate matches all elements 101
Finding an element 101 = Finding the first element 102

5.4 Reducing 103

Summing the elements 103 = Maximum and minimum 105
5.5 Putting it all into practice 108

The domain: Traders and Transactions 109 = Solutions 110
5.6 Numeric streams 112

Primitive stream specializations 112 = Numeric ranges 114
Putting numerical streams into practice: Pythagorean triples 114

CONTENTS

5.7 Building streams 117

Streams from values 117 = Streams from arrays 117
Streams from files 117 = Streams from functions: creating
infinite streams! 118

5.8 Summary 121

Collecting data with streams 123
6.1 Collectors in a nutshell 125

Collectors as advanced reductions 125
Predefined collectors 126
6.2 Reducing and summarizing 126
Finding maximum and minimum in a stream of values 127
Summarization 128 = Joining Strings 129
Generalized summarization with reduction 130

6.3 Grouping 134
Multilevel grouping 135 = Collecting data in subgroups 137

6.4 Partitioning 140

Advantages of partitioning 141 = Partitioning numbers into
prime and nonprime 142

6.5 The Collector interface 145
Making sense of the methods declared by Collector interface 146
Putting them all together 149

6.6 Developing your own collector for
better performance 151

Divide only by prime numbers 151
Comparing collectors’ performances 155

6.7 Summary 156

Parallel data processing and performance 158
7.1 Parallel streams 159

Turning a sequential stream into a parallel one 160
Measuring stream performance 162 = Using parallel
streams correctly 165 = Using parallel streams effectively 166

7.2 The fork/join framework 168

Working with RecursiveTask 168 = Best practices for using
the fork/join framework 172 = Work stealing 173

CONTENTS xiii

7.3 Spliterator 174

The splitting process 175 = Implementing your
own Spliterator 176

7.4 Summary 182

Refactoring, testing, and debugging 185
8.1 Refactoring for improved readability and flexibility 186

Improving code readability 186 = From anonymous classes
to lambda expressions 186 = From lambda expressions to
method references 188 = From imperative data processing
to Streams 189 = Improving code flexibility 190

8.2 Refactoring object-oriented design patterns
with lambdas 192
Strategy 192 = Template method 194 = Observer 195
Chain of responsibility 197 = Factory 199

8.3 Testing lambdas 200

Testing the behavior of a visible lambda 201

Focusing on the behavior of the method using a lambda 201
Pulling complex lambdas into separate methods 202
Testing high-order functions 202

8.4 Debugging 203
Examining the stack trace 203 = Logging information 205
8.5 Summary 206

Default methods 207
9.1 Evolving APIs 210
API version I 210 = API version 2 211
9.2 Default methods in a nutshell 213
9.3 Usage patterns for default methods 215
Optional methods 215 = Multiple inheritance of behavior 215
9.4 Resolution rules 219

Three resolution rules to know 219 = Most specific default-
providing interface wins 220 = Conflicts and explicit
disambiguation 221 = Diamond problem 223

9.5 Summary 224

CONTENTS

Using Optional as a better alternative to null 225

10.1

10.2
10.3

10.4

10.5

How do you model the absence of a value? 226

Reducing NullPointerExceptions with defensive checking 227
Problems with null 228 = What are the alternatives to null
in other languages? 229

Introducing the Optional class 230

Patterns for adopting Optional 231

Creating Optional objects 231 = Extracting and transforming
values from optionals with map 232 = Chaining Optional
objects with flatMap 233 = Default actions and unwrapping
an optional 236 = Combining two optionals 237

Rejecting certain values with filter 238

Practical examples of using Optional 240

Wrapping a potentially null value in an optional 240
Exceptions vs. Optional 241 = Putting it all together 242

Summary 243

CompletableFuture: composable asynchronous
programming 245

11.1

11.2

11.3

11.4

Futures 247

Futures limitations 248 = Using CompletableFutures to build
an asynchronous application 249

Implementing an asynchronous API 250

Converting a synchronous method into an asynchronous one 251
Dealing with errors 253

Make your code non-blocking 254

Parallelizing requests using a parallel Stream 255

Making asynchronous requests with CompletableFutures 256
Looking for the solution that scales better 258

Using a custom Executor 259

Pipelining asynchronous tasks 261

Implementing a discount service 262 = Using the
Discount service 263 = Composing synchronous and
asynchronous operations 264 = Combining two
CompletableFutures—dependent and independent 266
Reflecting on Futwre vs. CompletableFuture 267

CONTENTS XV

11.5 Reacting to a CompletableFuture completion 269

Refactoring the best-price-finder application 269
Putting it to work 271

11.6 Summary 272

New Date and Time API 273
12.1 LocalDate, LocalTime, Instant, Duration,
and Period 274

Working with LocalDate and LocalTime 275 = Combining a date
and a time 276 = Instant: a date and time for machines 276
Defining a Duration or a Period 277

12.2 Manipulating, parsing, and formatting dates 279

Working with TemporalAdjusters 280 = Printing and parsing
date-time objects 283

12.3 Working with different time zones and calendars 285

Fixed offset from UTC/Greenwich 286 = Using alternative
calendar systems 286

12.4 Summary 287

Thinking functionally 291

13.1 Implementing and maintaining systems 292

Shared mutable data 292 = Declarative programming 293
Why functional programming? 294

13.2 What’s functional programming? 294

Functional-style Java 295 = Referential transparency 297
Object-oriented vs. functional-style programming 298
Functional style in practice 298

13.3 Recursion vs. iteration 300
13.4 Summary 304

Functional programming techniques 305
14.1 Functions everywhere 306

Higher-order functions 306 = Currying 307
14.2 Persistent data structures 309

Destructive updates vs. functional 309 = Another example
with Trees 310 = Using a functional approach 312

xvi CONTENTS

14.3 Lazy evaluation with streams 314

Self-defining stream 314 = Your own lazy list 317
14.4 Pattern matching 321

Visitor design pattern 322 = Pattern matching to the rescue 322
14.5 Miscellany 325

Caching or memoization 325 = What does “return the same
object” mean? 327 = Combinators 327

14.6 Summary 328

Blending OOP and FP: comparing Java 8 and Scala 329
15.1 Introduction to Scala 330

Hello beer 330 = Basic data structures: List, Set, Map, Tuple,
Stream, Option 332

15.2 Functions 337

First-class functions in Scala 337 = Anonymous functions
and closures 338 = Currying 339

15.3 Classes and traits 341

Less verbosity with Scala classes 341 = Scala traits vs.
Java 8 interfaces 342

15.4 Summary 343

Conclusions and where next for Java 344
16.1 Review of Java 8 features 344

Behavior parameterization (lambdas and method references) 345
Streams 346 = CompletableFuture 346 = Optional 347
Default methods 347

16.2 What’s ahead for Java? 348

Collections 348 = Type system enhancements 348
Pattern matching 350 = Richer forms of generics 351
Deeper support for immutability 353 = Value types 353

16.3 The final word 357

appendix A Miscellaneous language updates 358

appendix B Miscellaneous library updates 362

appendix C Performing multiple operations in parallel on a stream 370
appendix D Lambdas and JVM bytecode 379

index 385

