
Storm Applied

brief contents
1 ■ Introducing Storm 1

2 ■ Core Storm concepts 12

3 ■ Topology design 33

4 ■ Creating robust topologies 76

5 ■ Moving from local to remote topologies 102

6 ■ Tuning in Storm 130

7 ■ Resource contention 161

8 ■ Storm internals 187

9 ■ Trident 207

1 Introducing Storm 1

1.1 What is big data? 2
The four Vs of big data 2 ■ Big data tools 3

1.2 How Storm fits into the big data picture 6
Storm vs. the usual suspects 8

1.3 Why you’d want to use Storm 10

1.4 Summary 11

2 Core Storm concepts 12

2.1 Problem definition: GitHub commit count dashboard 12
Data: starting and ending points 13

Breaking down

the problem 14

2.2 Basic Storm concepts 14
Topology 15 ■ Tuple 15 ■ Stream 18 ■ Spout 19

Bolt 20 ■ Stream grouping 22

2.3 Implementing a GitHub commit count dashboard

in Storm 24
Setting up a Storm project 25 ■ Implementing the spout 25

Implementing the bolts 28 ■ Wiring everything together to form

the topology 31

2.4 Summary 32

3 Topology design 33

3.1 Approaching topology design 34

3.2 Problem definition: a social heat map 34
Formation of a conceptual solution 35

3.3 Precepts for mapping the solution to Storm 35
Consider the requirements imposed by the data stream 36

Represent data points as tuples 37 ■ Steps for determining

the topology composition 38

3.4 Initial implementation of the design 40
Spout: read data from a source 41 ■ Bolt: connect to an

external service 42 ■ Bolt: collect data in-memory 44

Bolt: persisting to a data store 48 ■ Defining stream

groupings between the components 51 ■ Building a topology

for running in local cluster mode 51

3.5 Scaling the topology 52
Understanding parallelism in Storm 54 ■ Adjusting the topology

to address bottlenecks inherent within design 58 ■ Adjusting the

topology to address bottlenecks inherent within a data stream 64

3.6 Topology design paradigms 69
Design by breakdown into functional components 70

Design by breakdown into components at points of repartition 71

Simplest functional components vs. lowest number of repartitions 74

3.7 Summary 74

4 Creating robust topologies 76

4.1 Requirements for reliability 76
Pieces of the puzzle for supporting reliability 77

4.2 Problem definition: a credit card authorization system 77
A conceptual solution with retry characteristics 78

Defining the data points 79 ■ Mapping the solution to Storm

with retry characteristics 80

4.3 Basic implementation of the bolts 81
The AuthorizeCreditCard implementation 82

The ProcessedOrderNotification implementation 83

4.4 Guaranteed message processing 84
Tuple states: fully processed vs. failed 84 ■ Anchoring, acking,

and failing tuples in our bolts 86 ■ A spout’s role in guaranteed

message processing 90

4.5 Replay semantics 94
Degrees of reliability in Storm 94 ■ Examining exactly once

processing in a Storm topology 95 ■ Examining the reliability

guarantees in our topology 95

4.6 Summary 101

5 Moving from local to remote topologies 102

5.1 The Storm cluster 103
The anatomy of a worker node 104 ■ Presenting a

worker node within the context of the credit card

authorization topology 106

5.2 Fail-fast philosophy for fault tolerance within

a Storm cluster 108

5.3 Installing a Storm cluster 109
Setting up a Zookeeper cluster 109 ■ Installing the required Storm

dependencies to master and worker nodes 110 ■ Installing Storm

to master and worker nodes 110 ■ Configuring the master and

worker nodes via storm.yaml 110 ■ Launching Nimbus and

Supervisors under supervision 111

5.4 Getting your topology to run on a Storm cluster 112
Revisiting how to put together the topology components 112

Running topologies in local mode 113 ■ Running topologies

on a remote Storm cluster 114 ■ Deploying a topology to

a remote Storm cluster 114

5.5 The Storm UI and its role in the Storm cluster 116
Storm UI: the Storm cluster summary 116 ■ Storm UI:

individual Topology summary 120 ■ Storm UI: individual

spout/bolt summary 124

5.6 Summary 129

6 Tuning in Storm 130

6.1 Problem definition: Daily Deals! reborn 131
Formation of a conceptual solution 132 ■ Mapping the solution

to Storm concepts 132

6.2 Initial implementation 133
Spout: read from a data source 134 ■ Bolt: find recommended

sales 135 ■ Bolt: look up details for each sale 136

Bolt: save recommended sales 138

6.3 Tuning: I wanna go fast 139
The Storm UI: your go-to tool for tuning 139

Establishing a baseline set of performance numbers 140

Identifying bottlenecks 142 ■ Spouts: controlling the rate

data flows into a topology 145

6.4 Latency: when external systems take their time 148
Simulating latency in your topology 148 ■ Extrinsic and intrinsic

reasons for latency 150

6.5 Storm’s metrics-collecting API 154
Using Storm’s built-in CountMetric 154 ■ Setting up a metrics

consumer 155 ■ Creating a custom SuccessRateMetric 156

Creating a custom MultiSuccessRateMetric 158

6.6 Summary 160

7 Resource contention 161

7.1 Changing the number of worker processes running

on a worker node 163
Problem 163 ■ Solution 164 ■ Discussion 165

7.2 Changing the amount of memory allocated to worker

processes (JVMs) 165
Problem 165 ■ Solution 165 ■ Discussion 166

7.3 Figuring out which worker nodes/processes a topology is

executing on 166
Problem 166 ■ Solution 166 ■ Discussion 167

7.4 Contention for worker processes in a Storm cluster 168
Problem 169 ■ Solution 170 ■ Discussion 171

7.5 Memory contention within a worker process (JVM) 171
Problem 174 ■ Solution 174 ■ Discussion 175

7.6 Memory contention on a worker node 175

Problem 178 ■ Solution 178 ■ Discussion 178

7.7 Worker node CPU contention 178
Problem 179 ■ Solution 179 ■ Discussion 181

7.8 Worker node I/O contention 181
Network/socket I/O contention 182 ■ Disk I/O contention 184

7.9 Summary 186

8 Storm internals 187

8.1 The commit count topology revisited 188
Reviewing the topology design 188 ■ Thinking of the topology as

running on a remote Storm cluster 189 ■ How data flows between

the spout and bolts in the cluster 189

8.2 Diving into the details of an executor 191
Executor details for the commit feed listener spout 191

Transferring tuples between two executors on the same JVM 192

Executor details for the email extractor bolt 194 ■ Transferring

tuples between two executors on different JVMs 195 ■ Executor

details for the email counter bolt 197

8.3 Routing and tasks 198

8.4 Knowing when Storm’s internal queues overflow 200
The various types of internal queues and how they might

overflow 200 ■ Using Storm’s debug logs to diagnose buffer

overflowing 201

8.5 Addressing internal Storm buffers overflowing 203
Adjust the production-to-consumption ratio 203 ■ Increase the size

of the buffer for all topologies 203 ■ Increase the size of the buffer

for a given topology 204 ■ Max spout pending 205

8.6 Tweaking buffer sizes for performance gain 205

8.7 Summary 206

9 Trident 207

9.1 What is Trident? 208
The different types of Trident operations 210 ■ Trident streams

as a series of batches 211

9.2 Kafka and its role with Trident 212
Breaking down Kafka’s design 212 ■ Kafka’s alignment

with Trident 215

9.3 Problem definition: Internet radio 216
Defining the data points 217 ■ Breaking down the problem

into a series of steps 217

9.4 Implementing the internet radio design

as a Trident topology 217
Implementing the spout with a Trident Kafka spout 219

Deserializing the play log and creating separate streams for each of the

fields 220 ■ Calculating and persisting the counts for artist, title,

and tag 224

9.5 Accessing the persisted counts through DRPC 229
Creating a DRPC stream 230 ■ Applying a DRPC state query to a

stream 231 ■ Making DRPC calls with a DRPC client 232

9.6 Mapping Trident operations to Storm primitives 233

9.7 Scaling a Trident topology 239
Partitions for parallelism 239 ■ Partitions in Trident

streams 240

9.8 Summary 243

afterword 244

index 247

