contents

preface  xiii
acknowledgments  xv
about this book  xviii

A new paradigm for Big Data 1

1.1 How this book is structured 2

1.2 Scaling with a traditional database 3

Scaling with a queue 3 = Scaling by sharding the database 4
Fault-tolerance issues begin 5 = Corruption issues 5 = What
went wrong? 5 = How will Big Data techniques help? 6

1.3 NoSQL is not a panacea 6
1.4 First principles 6
1.5 Desired properties of a Big Data system 7

Robustness and fault tolerance 7 = Low latency reads and
updates 8 = Scalability 8 = Generalization 8§ = Extensibility 8
Ad hoc queries 8 = Minimal maintenance 9 = Debuggability 9

1.6  The problems with fully incremental architectures 9

Operational complexity 10 = Extreme complexity of achieving
eventual consistency 11 = Lack of human-fault tolerance 12
Fully incremental solution vs. Lambda Architecture solution 13



CONTENTS

1.7 Lambda Architecture 14

Batch layer 16 = Serving layer 17 = Batch and serving layers
satisfy almost all properties 17 = Speed layer 18

1.8 Recent trends in technology 20

CPUs aren’t getting faster 20 = Elastic clouds 21 = Vibrant
open source ecosystem for Big Data 21

1.9 Example application: SuperWebAnalytics.com 22
1.10 Summary 23

Data model for Big Data 27
2.1 The properties of data 29

Data is raw 31 = Data is immutable 34 = Data is eternally
true 36

2.2 The fact-based model for representing data 37

Example facts and their properties 37 = Benefits of the fact-based
model 39

2.3 Graph schemas 43

Elements of a graph schema 43 = The need for an enforceable
schema 44

2.4 A complete data model for SuperWebAnalytics.com 45
2.5 Summary 46

Data model for Big Data: Illustration 47

3.1 Why a serialization framework? 48

3.2 Apache Thrift 48
Nodes 49 = Edges 49 = Properties 50 = Tying everything
together into data objects 51 = Evolving your schema 51

3.3 Limitations of serialization frameworks 52

3.4 Summary 53

Data storage on the batch layer 54

4.1 Storage requirements for the master dataset 55

4.2 Choosing a storage solution for the batch layer 56

Using a key/value store for the master dataset 56 = Distributed
filesystems 57



CONTENTS vii

4.3 How distributed filesystems work 58

4.4 Storing a master dataset with a distributed filesystem 59
4.5 Vertical partitioning 61

4.6 Low-level nature of distributed filesystems 62

4.7 Storing the SuperWebAnalytics.com master dataset on a
distributed filesystem 64

4.8 Summary 64

Data storage on the batch layer: Illustration 65

5.1 Using the Hadoop Distributed File System 66
The small-files problem 67 = Towards a higher-level abstraction 67

5.2 Data storage in the batch layer with Pail 68
Basic Pail operations 69 = Serializing objects into pails 70
Batch operations using Pail 72 = Vertical partitioning with
Pail 73 = Pail file formats and compression 74 » Summarizing
the benefits of Pail 75
5.3  Storing the master dataset for SuperWebAnalytics.com 76

A structured pail for Thrift objects 77 = A basic pail for
SuperWebAnalytics.com 78 = A split pail to vertically partition
the dataset 78

54 Summary 82

Batch layer 83
6.1 Motivating examples 84

Number of pageviews over time 84 = Gender inference 85
Influence score 85

6.2 Computing on the batch layer 86

6.3 Recomputation algorithms vs. incremental algorithms 88
Performance 89 = Human-fault tolerance 90 = Generality of the
algorithms 91 = Choosing a style of algorithm 91

6.4 Scalability in the batch layer 92

6.5 MapReduce: a paradigm for Big Data computing 93
Scalability 94 = Fault-tolerance 96 = Generality of MapReduce 97

6.6 Low-level nature of MapReduce 99
Multistep computations are unnatural 99 = Joins are very
complicated to implement manually 99 = Logical and physical
execution tightly coupled 101



viii CONTENTS

6.7 Pipe diagrams: a higher-level way of thinking about batch
computation 102

Concepts of pipe diagrams 102 = Executing pipe diagrams via
MapReduce 106 = Combiner aggregators 107 = Pipe diagram
examples 108

6.8 Summary 109

Batch layer: Illustration 111

7.1 An illustrative example 112
7.2 Common pitfalls of data-processing tools 114
Custom languages 114 = Poorly composable abstractions 115

7.3 An introduction to JCascalog 115

The JCascalog data model 116 = The structure of a JCascalog
query 117 = Querying multiple datasets 119 = Grouping and
aggregators 121 = Stepping though an example query 122

Custom predicate operations 125

7.4 Composition 130

Combining subqueries 130 = Dynamically created
subqueries 131 = Predicate macros 134 = Dynamically
created predicate macros 136

7.5 Summary 138

An example batch layer: Architecture and algorithms 139
8.1 Design of the SuperWebAnalytics.com batch layer 140
Supported queries 140 = Batch views 141
8.2 Workflow overview 144
8.3 Ingesting new data 145
8.4 URL normalization 146
8.5 User-identifier normalization 146
8.6 Deduplicate pageviews 151
8.7 Computing batch views 151

Pageviews over time 151 = Unique visitors over time 152
Bounce-rate analysis 152

8.8 Summary 154



CONTENTS

An example batch layer: Implementation 156

9.1 Starting point 157

9.2 Preparing the workflow 158

9.3 Ingesting new data 158

9.4 URL normalization 162

9.5 User-identifier normalization 163
9.6 Deduplicate pageviews 168

9.7 Computing batch views 169

Pageviews over time 169 = Uniques over time 171 = Bounce-
rate analysis 172

9.8 Summary 175

Serving layer 179
10.1  Performance metrics for the serving layer 181

10.2  The serving layer solution to the normalization/
denormalization problem 183

10.3 Requirements for a serving layer database 185

10.4 Designing a serving layer for SuperWebAnalytics.com 186
Pageviews over time 186 = Uniques over time 187 = Bounce-
rate analysis 188

10.5 Contrasting with a fully incremental solution 188

Fully incremental solution to uniques over time 188 = Comparing
to the Lambda Architecture solution 194

10.6  Summary 195

Serving layer: Illustration 196

11.1 Basics of ElephantDB 197
View creation in ElephantDB 197 = View serving in
ElephantDB 197 = Using ElephantDB 198
11.2 Building the serving layer for SuperWebAnalytics.com 200

Pageviews over time 200 = Uniques over time 202 = Bounce-
rate analysis 203

11.3  Summary 204



CONTENTS

Realtime views 207
12.1 Computing realtime views 209

12.2  Storing realtime views 210
Eventual accuracy 211 = Amount of state stored in the speed
layer 211

12.3 Challenges of incremental computation 212

Validity of the CAP theorem 213 = The complex interaction
between the CAP theorem and incremental algorithms 214

12.4 Asynchronous versus synchronous updates 216
12.5 Expiring realtime views 217
12.6 Summary 219

Realtime views: Illustration 220
13.1 Cassandra’s data model 220

13.2  Using Cassandra 222
Advanced Cassandra 224

13.3  Summary 224

Queuing and stream processing 225
14.1 Queuing 226

Single-consumer queue servers 226 = Multi-consumer

queues 228

14.2  Stream processing 229
Queues and workers 230 = Queues-and-workers pitfalls 231

14.3 Higher-level, one-at-a-time stream processing 231
Storm model 232 = Guaranteeing message processing 236

14.4 SuperWebAnalytics.com speed layer 238
Topology structure 240

14.5 Summary 241

Queuing and stream processing: Illustration 242
15.1 Defining topologies with Apache Storm 242
15.2  Apache Storm clusters and deployment 245

15.3 Guaranteeing message processing 247



CONTENTS xi

15.4 Implementing the SuperWebAnalytics.com uniques-over-time
speed layer 249

15.5 Summary 253

Micro-batch stream processing 254

16.1 Achieving exactly-once semantics 255

Strongly ordered processing 255 = Micro-batch stream
processing 256 = Micro-batch processing topologies 257

16.2 Core concepts of micro-batch stream processing 259
16.3 Extending pipe diagrams for micro-batch processing 260
16.4 Finishing the speed layer for SuperWebAnalytics.com 262

Pageviews over time 262 = Bounce-rate analysis 263
16.5 Another look at the bounce-rate-analysis example 267
16.6 Summary 268

Micro-batch stream processing: Illustration 269
17.1 Using Trident 270
17.2  Finishing the SuperWebAnalytics.com speed layer 273

Pageviews over time 273 = Bounce-rate analysis 275

17.3  Fully fault-tolerant, in-memory, micro-batch processing 281
17.4 Summary 283

Lambda Architecture in depth 284
18.1 Defining data systems 285
18.2 Batch and serving layers 286

Incremental batch processing 286 = Measuring and optimizing
batch layer resource usage 293

18.3 Speed layer 297
18.4 Querylayer 298
18.5 Summary 299

index 301



