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foreword to the first edition
I first integrated Groovy into a project I was working on almost two years ago. There is
a long and rich history of using “scripting languages” as a flexible glue to stitch
together, in different ways, large modular components from a variety of frameworks.
Groovy is a particularly interesting language from this tradition, because it doesn’t shy
away from linguistic sophistication in the pursuit of concise programming, especially
in the areas around XML, where it is particularly strong. Groovy goes beyond the
“glue” tradition of the scripting world to being an effective implementation language
in its own right. In fact, while Groovy is often thought of and referred to as a scripting
language, it really is much more than that.

 It is traditional for scripting languages to have an uneasy relationship with the
underlying linguistic system in which the frameworks are implemented. In Groovy’s
case, they have been able to leverage the underlying Java model to get integration that
is smooth and efficient. And because of the linguistic similarities between Java and
Groovy, it is fairly painless for developers to shift between programming in one envi-
ronment and the other.

 Groovy in Action by Dierk König and his coauthors is a clear and detailed exposition
of what is groovy about Groovy. I’m glad to have it on my bookshelf.

JAMES GOSLING

CREATOR OF JAVA

 DECEMBER 2006



xx

preface
Nothing is more terrible than ignorance in action.

                                                                                             —Johann Wolfgang von Goethe

Thinking back to January 2007 when the first edition of this book hit the shelves, feels
like time travel to the Middle Ages. The idea of using a programming language other
than Java on the Java platform was widely considered frivolous. Today, a new language
seems to pop up every other week, and we even go as far as designing languages for
specific domains (DSLs) on a per-project basis.

 This evolution of languages reflects a change in concerns. If performance were
still our utmost concern, we would all be coding in a low-level language. But if perfor-
mance is considered “good enough” for our purposes, we now turn our focus on
human approachability.

 Groovy has been a trendsetter for this development. Many Groovy features that
ease the burden of developers are now commonplace in novel languages and may
even find their way into newer versions of Java: literal declarations for common data-
types, simplified property access, null-safe dereferencing, closures, and more. Surpris-
ingly many languages have adopted Groovy’s optional typing strategy—few languages
can claim to have static and dynamic behavior at the same time, though, the way Groovy
has since version 2.

 Just like Groovy, the first edition of this book set some trends as well. The idea of hav-
ing every single listing as a self-testing piece of code resonated in the market and may be
one reason why the book is among Manning’s top-ten bestsellers of the decade. 
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 The feedback for the first edition was overwhelming. We never expected to have so
many great developers speaking so nicely about our work. We have no words to express
this feeling of being proud and humbled at the same time. Most touching, though,
was the stranger who once gave Dierk a pat on the back and mumbled, “Thank you for
the book!” and then disappeared into the crowd. This book is for him.

 We are fully aware that the first edition would have never been so successful if
Groovy itself had been less appealing. The reason for Groovy’s success is easy to see: it
delivers its power in the most Java-friendly manner. It is Java’s dynamic friend.

 The development of Groovy, from version 1.0 covered in the first edition of this
book until the current version 2.4, has closed what used to be a syntax gap by pro-
viding enums, annotations, generics, the classic for loop, nested classes, varargs,
static imports, and the ability to use Groovy closures where Java 8 expects lambda
expressions.

 The Groovy project has progressed at a very high speed, not only in its core but
also at its periphery. We see, for example, new usages of compile-time meta-
programming. This core feature gets instantly applied in the Spock testing frame-
work, which in turn contributes back its “power assert” feature to the core. The com-
munity is buzzing and it has become a challenge to keep up to date with all the
developments and activities.

 It’s only natural that many readers of the first edition of Groovy in Action (or “Gina”
as we say for short) demanded an update that we are now happy to deliver as the sec-
ond edition (codename “ReGina”). Our goal in this book is not only to rework the
code examples, update the API description, and explain new features, but also to reflect
the marketplace and the growth of the ecosystem. Groovy has evolved from a niche
language to the default choice for dynamic programming on the Java platform for
millions of developers. 

 Major financial organizations use Groovy to transfer billions of dollars every day,
space agencies watch the stars with the help of Groovy, and satellite live-data streams
are handled by Groovy code. Groovy is traveling the oceans, shipping containers
around the globe, helping software developers automate recurring tasks, and running
Mom’s website. We felt an obligation to provide an up-to-date, solid, and comprehen-
sive book to all these users.

 Not only did Groovy and its environment change, we authors changed as well. We
enjoyed the luxury of working on Groovy projects, introducing new team members to
the language, running workshops and tutorials, recognizing struggles (and occasion-
ally struggling ourselves), finding lots of unanticipated use cases while consulting,
exploring new practices, using the toolset in anger, and generally facing the Groovy
development reality. The book reflects these experiences. 

 In this second edition, we put more emphasis on the optional typing system,
explain both dynamic and static metaprogramming in full depth, dive into type check-
ing and static compilation, cover domain-specific languages, and introduce new mod-
ules that have evolved for user interfaces, testing, XML, JSON, database programing,
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Web Services, dependency management, build automation, and concurrent program-
ming as well as give you an updated overview of the Groovy ecosystem. We hope you
will find this updated book an enjoyable and rewarding read. 

DIERK KÖNIG

PAUL KING
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about this book
Groovy in Action, Second Edition describes the Groovy language, presents the library
classes and methods that Groovy adds to the standard Java Development Kit, and leads
you through a number of topics that you are likely to encounter in your daily develop-
ment work. The book has three parts:

■ Part 1 The Groovy language
■ Part 2 Around the Groovy library
■ Part 3 Applied Groovy

An introductory chapter explains what Groovy is and then part 1 starts with a broad
overview of Groovy’s language features, before going into more depth about scalar and
collective datatypes. The language description includes an explanation of the closure
concept that is ubiquitous in Groovy, describing how it relates to and distinguishes
itself from control structures. We present Groovy’s model of object-orientation and its
dynamic capabilities at both runtime and compile-time. Part 1 closes with a surprise:
You can use Groovy as a static language as well!

 Part 2 begins the library description with a presentation of Groovy’s builder con-
cept and its various implementations. An explanation of the GDK follows, with
Groovy’s enhancements to the Java standard library. This is the “beef” of the library
description in part 2. The Groovy library shines with simple but powerful support
for database programming and XML and JSON handling, and we include a detailed
exposition of both topics. Another big advantage of Groovy is its all-out seamless
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integration with Java, and we explain the options provided by the Groovy library for
setting this into action.

 If part 1 was a tutorial and part 2 a reference, part 3 is about typical use cases for
Groovy. It starts with a thorough exposition of how to use Groovy for test automa-
tion. Testing is an important topic in itself, but with Groovy even more so since
Groovy developers seem to be very quality-oriented and even in otherwise plain-Java
projects, Groovy is often used for testing because it is so convenient. Next, we want
to use Groovy on multi-core machines and thus go into concurrent programming
with Groovy. Another much-requested topic is using Groovy for domain specific lan-
guages, which we cover in a full, dedicated chapter. Part 3 ends with an overview of
the Groovy ecosystem.

 The book closes with an extensive series of helpful appendixes, which are intended
to serve as quick references, cheat sheets, and detailed technical descriptions.

Who should read this book?
This book is for everyone who wants to learn Groovy as a new dynamic programming
language. Existing Groovy users can use it to deepen their knowledge; and both new
and experienced programmers can use it as a black-and-white reference. We found
ourselves going to our own book to look up details that we had forgotten. Newcomers
to Groovy will need a basic understanding of Java since Groovy is completely depen-
dent on it; Java basics are not covered in our book. 

 Topics have been included that will make reading and understanding easier, but
are not mandatory prerequisites: patterns of object-oriented design, Ant, Maven,
JUnit, HTML, XML, JSON, Swing, and JavaFX. It is beneficial—but not required—to
have been exposed to some other scripting language. This enables you to connect
what you read to what you already know. Where appropriate, we point out similarities
and differences between Groovy and other languages.

What’s new in the second edition?
When starting the second edition, we considered adding visual clues or icons to the
book so readers could quickly see what had changed from the first edition. We had to
give up on that idea or the whole book would have been full of markers since there is
hardly any paragraph that hasn’t changed!

 The second edition is a full rewrite. We dropped some chapters, reorganized others,
and added new ones, so the book now has 20 chapters, up from 16, and a few hundred
additional pages of genuinely new content. These changes reflect the evolution of the
language and its use in the market.  

 Tackling the task of covering such a big topic needs many hands and we were very
lucky that Hamlet Darcy, Cédric Champeau, and Erik Pragt joined the team. Hamlet
authored the new chapters 9 “AST Transformations” and 20 “The Groovy Ecosystem.”
Cédric contributed his deep knowledge of Groovy internals to the new chapter 10
“Groovy as a static language” and helped to fine-tune chapters 7, 9, and 16. Erik got
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the laborious task of going through all changes to the Groovy standard library for
chapter 12 “Working with the GDK” and fundamentally revised chapter 17 “Unit test-
ing with Groovy” to cover the popular Spock testing framework. 

 Guillaume Laforge revised chapter 16 “Integrating Groovy” and shaped new chap-
ter 19 “Domain Specific Languages (DSLs)” to address this important usage of Groovy.

 Dierk König added chapter 19 “Concurrent Groovy with GPars” to show how well
Groovy fits into the multi-core era. He also thoroughly revised and updated the core
“language” chapters 1 through 6. Former chapter 7 was split into “Object orientation,
Groovy style,” and a new chapter 8 “Dynamic Programming with Groovy.”  

 Paul King revised the “library” chapters 11 “Working with builders,” 13 “Database
programming with Groovy,” and split the former XML chapter 14 into “Working with
XML and JSON” and 15 “Interacting with Web Services” and extended the content to
account for the rising importance of these Groovy usages. He also did the enormous
work of going through every single page of the book to ensure consistency in style, word-
ing, feel, and appearance. With so many authors and such diverse topics it is very diffi-
cult to keep the book coherent. If we finally managed to achieve this, it is thanks to Paul.

Code conventions and downloads
This book provides copious examples that show how you can make use of each of the
topics covered. Source code in listings or in text appears in a fixed-width font like
this to separate it from ordinary text. In addition, class and method names, object
properties, and other code-related terms and content in text are presented using
fixed-width font.

 Occasionally, code is italicized, as in reference.dump(). In this case reference
should not be entered literally but replaced with the content that is required, such as
the appropriate reference.

 Where the text contains the pronouns “I” and “we”, the “we” refers to all the
authors. “I” refers to the lead author of the respective chapter.

 Most of the code examples contain Groovy code. This code is very compact so we
present it “as is” without any omissions. Unless stated otherwise, you can copy and
paste it into a new file and run it right away. In rare cases, when this wasn’t possible, we
have used … (ellipses).

 Java, HTML, XML, and command-line input can be verbose. In many cases, the
original source code (available online) has been reformatted; we’ve added line breaks
and reworked indentation to accommodate the page space available in the book. In
rare cases, when even this was not enough, line-continuation markers were added. 

 Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered cueballs link to additional explanations that follow
the listing.

 You can download the source code for all of the examples in the book from the
publisher’s website at www.manning.com/GroovyinActionSecondEdition.
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Keeping up to date
The world doesn’t stop turning when you finish writing a book, and getting the book
through production also takes time. Therefore, some of the information in any techni-
cal book becomes quickly outdated, especially in the dynamic world of agile languages. 

 This book covers Groovy 2.4. Groovy will see numerous improvements, and by the
time you read this, it’s possible that an updated version will have become available.
New Groovy versions always come with a detailed list of changes. It is unlikely that any
of the core Groovy concepts as laid out in this book will change significantly in the
near future; and even then the emphasis is likely to be on additional concepts and fea-
tures. Groovy has earned a reputation of caring deeply about backward compatibility.
This outlook makes the book a wise investment, even in a rapidly changing world.

 We will do our best to keep the online resources for this book reasonably up to
date and provide information about language and library changes as the project
moves on. Please check for updates on the book’s web page at www.manning.com/
GroovyinActionSecondEdition.

Author Online
Purchase of Groovy in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/Groovyin-
ActionSecondEdition. This page provides information on how to get on the forum
once you are registered, what kind of help is available, and the rules of conduct on
the forum. It also provides links to the source code for the examples in the book,
errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the cover illustration
The figure on the cover of Groovy in Action, Second Edition is a “Danzerina del Japon,” a
Japanese dancer, taken from a Spanish compendium of regional dress customs first
published in Madrid in 1799. While the artist may have captured the “spirit” of a Japa-
nese dancer in his drawing, the illustration does not accurately portray the looks,
dress, or comportment of a Japanese woman or geisha of the time, compared to Japa-
nese drawings from the same period. The artwork in this collection was clearly not
researched first hand! 
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The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R.
Obra muy util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored this
illustration by hand, the “exactitude” of their execution is evident in this drawing. The
“Danzerina del Japon” is just one of many figures in this colorful collection. Travel for
pleasure was a relatively new phenomenon at the time and books such as this one
were popular, introducing both the tourist as well as the armchair traveler to the
exotic inhabitants, real and imagined, of other regions of the world.

 Dress codes have changed since then and the diversity by nation and by region, so
rich at the time, has faded away. It is now often hard to tell the inhabitant of one con-
tinent from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interesting
intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two centu-
ries ago, brought back to life by the pictures from this collection.
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