
Praise for the First Edition

For anyone considering Groovy, or just interested in seeing what all of the fuss is around
the features of dynamic languages, this book will deliver.

—Gregory Pierce, JavaLobby.org

Not just a language guide, this book presents the clear, readable, and enjoyable specification
of Groovy … you should definitely read it.

 —Alexander Popescu, Mindstorm

A real page-turner. Brilliant examples … all other programming books I know really
fall behind.

 —Dr. Gernot Starke

Excellent code samples ... very readable.

 —Scott Shaw, ThoughtWorks

Great, logical focus on language features.

—Norman Richards, author of XDoclet in Action

Destined to be the definitive guide. First rate!

 —Glen Smith, Bytecode Pty Ltd.

Examples are clear, complete, and they work!

 —David Sills, JavaLobby.org

Among the top five Manning books. For me personally, it’s also a perception-changing
and influential book.

 —Weiqi Gao

The examples are the strongest part of the book—all assumptions are checked using assertions,
and they have been run before printing so one can trust that they’re faultless. Explanations
are fine-grained so even inexperienced developers can read it with understanding.

—Marek Zganiacz, Comarch SA

Very readable, engaging, and does a great job of slotting Groovy into the broader world of
software development. Highly recommended.

 —Pan Pantziarka

Real computer LITERATURE.
 —Johannes Link

 To our families

Groovy in Action
Second Edition

DIERK KÖNIG

PAUL KING

WITH

GUILLAUME LAFORGE
HAMLET D’ARCY

CÉDRIC CHAMPEAU
ERIK PRAGT

AND JON SKEET

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Nermina Miller
20 Baldwin Road Copyeditor: Jodie Allen
PO Box 761 Technical editor Michael Smolyak
Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Technical proofreader: Gordon Dickens
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781935182443
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

v

brief contents
PART 1 THE GROOVY LANGUAGE...1

1 ■ Your way to Groovy 3

2 ■ Overture: Groovy basics 28

3 ■ Simple Groovy datatypes 54

4 ■ Collective Groovy datatypes 91

5 ■ Working with closures 117

6 ■ Groovy control structures 145

7 ■ Object orientation, Groovy style 164

8 ■ Dynamic programming with Groovy 200

9 ■ Compile-time metaprogramming and AST
transformations 233

10 ■ Groovy as a static language 294

PART 2 AROUND THE GROOVY LIBRARY.................................341

11 ■ Working with builders 343

12 ■ Working with the GDK 401

13 ■ Database programming with Groovy 445

BRIEF CONTENTSvi

14 ■ Working with XML and JSON 506

15 ■ Interacting with Web Services 543

16 ■ Integrating Groovy 561

PART 3 APPLIED GROOVY..603

17 ■ Unit testing with Groovy 605

18 ■ Concurrent Groovy with GPars 650

19 ■ Domain-specific languages 676

20 ■ The Groovy ecosystem 732

vii

contents
foreword to the first edition xix
preface xx
acknowledgments xxiii
about this book xxv
about the authors xxx

PART 1 THE GROOVY LANGUAGE...................................1

1 Your way to Groovy 3
1.1 The Groovy story 4

What is Groovy? 5 ■ Playing nicely with Java:
seamless integration 6 ■ Power in your code: a feature-rich
language 9 ■ Community driven but corporate backed 13

1.2 What Groovy can do for you 14
Groovy for the busy Java professional 14 ■ Groovy for the polyglot
programmer 15 ■ Groovy for pragmatic programmers, extremos,
and agilists 16

1.3 Running Groovy 17
Using groovysh for a welcome message 18
Using groovyConsole 18 ■ Using the groovy command 20

CONTENTSviii

1.4 Compiling and running Groovy 22
Compiling Groovy with groovyc 22 ■ Running a compiled
Groovy script with Java 23

1.5 Groovy IDE and editor support 23
IntelliJ IDEA plug-in 24 ■ NetBeans IDE plug-in 25
Eclipse plug-in 26 ■ Groovy support in other editors 26

1.6 Summary 26

2 Overture: Groovy basics 28
2.1 General code appearance 29

Commenting Groovy code 29 ■ Comparing Groovy and
Java syntax 29 ■ Beauty through brevity 30

2.2 Probing the language with assertions 31
2.3 Groovy at a glance 34

Declaring classes 35 ■ Using scripts 35 ■ GroovyBeans 36
Annotations 37 ■ Using grapes 38 ■ Handling text 39
Numbers are objects 40 ■ Using lists, maps, and ranges 40
Code as objects: closures 43 ■ Groovy control structures 45

2.4 Groovy’s place in the Java environment 46
My class is your class 47 ■ GDK: the Groovy library 48
Groovy compiler lifecycle 49

2.5 Summary 53

3 Simple Groovy datatypes 54
3.1 Objects, objects everywhere 55

Java’s type system: primitives and references 55 ■ Groovy’s answer:
everything’s an object 56 ■ Interoperating with Java: automatic
boxing and unboxing 57 ■ No intermediate unboxing 58

3.2 The concept of optional typing 58
Assigning types 59 ■ Dynamic Groovy is type safe 59 ■ Let the
casting work for you 62 ■ The case for optional typing 63

3.3 Overriding operators 64
Overview of overridable operators 64 ■ Overridden operators
in action 66 ■ Making coercion work for you 68

3.4 Working with strings 69
Varieties of string literals 69 ■ Working with GStrings 72
From Java to Groovy 74

CONTENTS ix

3.5 Working with regular expressions 76
Specifying patterns in string literals 77 ■ Applying patterns 79
Patterns in action 81 ■ Patterns and performance 83
Patterns for classification 84

3.6 Working with numbers 85
Coercion with numeric operators 85 ■ GDK methods
for numbers 88

3.7 Summary 89

4 Collective Groovy datatypes 91
4.1 Working with ranges 92

Specifying ranges 93 ■ Ranges are objects 94
Ranges in action 95

4.2 Working with lists 97
Specifying lists 97 ■ Using list operators 98
Using list methods 101 ■ Lists in action 105

4.3 Working with maps 107
Specifying maps 108 ■ Using map operators 109
Maps in action 113

4.4 Notes on Groovy collections 114
Understanding concurrent modification 114
Distinguishing between copy and modify semantics 115

4.5 Summary 116

5 Working with closures 117
5.1 A gentle introduction to closures 118
5.2 The case for closures 119

Using iterators 119 ■ Handling resources with a protocol 121

5.3 Declaring closures 123
Simple declaration 123 ■ Using assignments for
declaration 124 ■ Referring to methods as closures 125
Comparing the available options 126

5.4 Using closures 127
Calling a closure 127 ■ More closure capabilities 130

5.5 Understanding closure scope 134
Simple variable scope 135 ■ Inspecting closure scope 136
Scoping at work: the classic accumulator test 139

CONTENTSx

5.6 Returning from closures 140
5.7 Support for design patterns 141

Relationship to the Visitor pattern 142 ■ Relationship to the
Builder pattern 143 ■ Relationship to other patterns 143

5.8 Summary 144

6 Groovy control structures 145
6.1 Groovy truth 146

Evaluating Boolean tests 146 ■ Assignments within
Boolean tests 147

6.2 Conditional execution structures 149
The humble if statement 149 ■ The conditional ?: operator
and Elvis 150 ■ The switch statement and the in operator 151
Sanity checking with assertions 154

6.3 Looping 157
Looping with while 157 ■ Looping with for 158

6.4 Exiting blocks and methods 160
Normal termination: return/break/continue 160
Exceptions: throw/try-catch-finally 161

6.5 Summary 162

7 Object orientation, Groovy style 164
7.1 Defining classes and scripts 165

Defining fields and local variables 165 ■ Methods and
parameters 168 ■ Safe dereferencing with the ?. operator 172
Constructors 173

7.2 Organizing classes and scripts 175
File to class relationship 176 ■ Organizing classes in
packages 177 ■ Further classpath considerations 180

7.3 Advanced object-oriented features 181
Using inheritance 181 ■ Using interfaces 182
Multimethods 183 ■ Using traits 185

7.4 Working with GroovyBeans 187
Declaring beans 187 ■ Working with beans 189
Using bean methods for any object 192 ■ Fields, accessors,
maps, and Expando 193

CONTENTS xi

7.5 Using advanced syntax features 194
Querying objects with GPaths 194 ■ Injecting the spread
operator 197 ■ Concise syntax with command chains 198

7.6 Summary 199

8 Dynamic programming with Groovy 200
8.1 What is dynamic programming? 202

8.2 Meta Object Protocol 202

8.3 Customizing the MOP with hook methods 204
Customizing methodMissing 204 ■ Customizing
propertyMissing 206 ■ Using closures for dynamic hooks 207
Customizing GroovyObject methods 208

8.4 Modifying behavior through the metaclass 210
MetaClass knows it all 210 ■ How to find the metaclass
and invoke methods 211 ■ Setting other metaclasses 213
Expanding the metaclass 214 ■ Temporary MOP modifications
using category classes 219 ■ Writing extension modules 222
Using the @Category annotation 223 ■ Merging classes
with Mixins 224

8.5 Real-world dynamic programming in action 227
Calculating with metrics 227 ■ Replacing constructors with
factory methods 228 ■ Fooling IDEs for fun and profit 228
Undoing metaclass modifications 230 ■ The Intercept/Cache/
Invoke pattern 231

8.6 Summary 232

9 Compile-time metaprogramming and
AST transformations 233
9.1 A brief history 234

Generating bytecode, not source code 234 ■ Putting the power
of code generation in the hands of developers 235

9.2 Making Groovy cleaner and leaner 235
Code-generation transformations 236 ■ Class design and design
pattern annotations 245 ■ Logging improvements 252
Declarative concurrency 254 ■ Easier cloning and
externalizing 258 ■ Scripting support 263
More transformations 267

CONTENTSxii

9.3 Exploring AST 268
Tools of the trade 270 ■ Other tools 271

9.4 AST by example: creating ASTs 272
Creating by hand 272 ■ AstBuilder.buildFromSpec 273
AstBuilder.buildFromString 274
AstBuilder.buildFromCode 275

9.5 AST by example: local transformations 276

9.6 AST by example: global transformations 282

9.7 Testing AST transformations 286

9.8 Limitations 290
It’s early binding 290 ■ It’s fragile 290
It adds complexity 290 ■ Its syntax is fixed 291
It’s not typed 291 ■ It’s unhygienic 291

9.9 Next steps 292
9.10 Summary 292

10 Groovy as a static language 294
10.1 Motivation for optional static typing 295

The role of types in Groovy 296 ■ Type checking
a dynamic language? 296

10.2 Using @TypeChecked 298
Finding typos 299 ■ Resolving method calls 300
Checking assignments 301 ■ Type inference 303
Type-checked Grooviness 306 ■ Type checking closures 310
Revisiting dynamic features in light of type checking 316
Mixing type-checked code with dynamic code 319

10.3 Flow typing 320
Least upper bound 323 ■ Smart instanceof inference 325
Closure-shared variables 326

10.4 Static compilation 327
@CompileStatic 328 ■ Method dispatch 329

10.5 Static type checking extensions 332
@DelegatesTo revisited 334 ■ Type checking
extension scripts 335 ■ Limits 339

10.6 Summary 340

CONTENTS xiii

PART 2 AROUND THE GROOVY LIBRARY341

11 Working with builders 343
11.1 Learning by example: Using a builder 345
11.2 Building object trees with NodeBuilder 347

NodeBuilder in action: a closer look at builder code 348
Understanding the builder concept 350 ■ Smart building
with logic 350

11.3 Working with MarkupBuilder 352
Building XML 352 ■ Building HTML 354

11.4 Working with StreamingMarkupBuilder 355
11.5 Task automation with AntBuilder 356

From Ant scripts to Groovy scripts 357 ■ How AntBuilder
works 358 ■ Smart automation scripts with logic 359

11.6 Easy GUIs with SwingBuilder 360
Reading a password with SwingBuilder 361 ■ Creating Swing
widgets 363 ■ Arranging your widgets 366 ■ Referring to
widgets 370 ■ Using Swing actions 372 ■ Using models 374
Binding made easy 377 ■ Putting it all together 380

11.7 Modern UIs with GroovyFX SceneGraphBuilder 386
Application design with FXML 388 ■ Properties and
binding 389 ■ Groovy desktop applications 389

11.8 Creating your own builder 390
Subclassing BuilderSupport 391 ■ Subclassing
FactoryBuilderSupport 395 ■ Rolling your own 398

11.9 Summary 399

12 Working with the GDK 401
12.1 Working with objects 402

Interactive objects 402 ■ Convenient Object methods 405
Iterative Object methods 408

12.2 Working with files and I/O 411
Traversing the filesystem 412 ■ Reading from input
sources 417 ■ Writing to output destinations 418
Filters and conversions 420 ■ Streaming serialized objects 422
Temporary data and file copying 422

CONTENTSxiv

12.3 Working with threads and processes 423
Groovy multithreading 424 ■ Integrating external processes 426

12.4 Working with templates 429
Understanding the template format 430 ■ Templates in
action 431 ■ Advanced template issues 433

12.5 Working with Groovlets 434
Starting with “Hello world” 435 ■ Groovlet binding 437
Templating Groovlets 441

12.6 Summary 443

13 Database programming with Groovy 445
13.1 Groovy SQL: a better JDBC 446

Setting up for database access 447 ■ Executing SQL 452

13.2 Advanced Groovy SQL 463
Performing transactional updates 463 ■ Working with
batches 464 ■ Working with pagination 466
Fetching metadata 466 ■ Working with named and named-
ordinal parameters 469 ■ Using stored procedures 471

13.3 DataSets for SQL without SQL 474
Using DataSet operations 475 ■ DataSets on
database views 479

13.4 Organizing database work 481
Architectural overview 481 ■ Specifying the application
behavior 483 ■ Implementing the infrastructure 484
Using a transparent domain model 488 ■ Implementing the
application layer 489

13.5 Groovy and NoSQL 492
MongoDB: A document-style database 492
Neo4J: A graph database 495

13.6 Other approaches 503
13.7 Summary 504

14 Working with XML and JSON 506
14.1 Reading XML documents 507

Working with a DOM parser 508 ■ Reading with
a Groovy parser 513 ■ Reading with a SAX parser 518
Reading with a StAX parser 519

CONTENTS xv

14.2 Processing XML 521
In-place processing 522 ■ Streaming processing 524
Updating XML 529 ■ Combining with XPath 531

14.3 Parsing and building JSON 538
Parsing JSON 538 ■ Building JSON 540

14.4 Summary 542

15 Interacting with Web Services 543
15.1 An overview of Web Services 544
15.2 Reading RSS and ATOM 545
15.3 Using a REST-based API 547
15.4 Using XML-RPC 553
15.5 Applying SOAP 555

Doing SOAP with plain Groovy 556 ■ Simplifying SOAP
access using HTTPBuilder 558 ■ Simplifying SOAP access
using groovy-wslite 559

15.6 Summary 560

16 Integrating Groovy 561
16.1 Prelude to integration 562

Integrating appropriately 563 ■ Setting up dependencies 564

16.2 Evaluating expressions and scripts with GroovyShell 565
Starting simply 565 ■ Passing parameters within a binding 567
Generating dynamic classes at runtime 569 ■ Parsing
scripts 569 ■ Running scripts or classes 571
Further parameterization of GroovyShell 571

16.3 Using the Groovy script engine 575
Setting up the engine 575 ■ Running scripts 576
Defining a different resource connector 576

16.4 Working with the GroovyClassLoader 577
Parsing and loading Groovy classes 577 ■ The chicken
and egg dependency problem 579 ■ Providing a custom
resource loader 580 ■ Playing it safe in a secured sandbox 581

16.5 Spring integration 584
Wiring GroovyBeans 585 ■ Refreshable beans 587
Inline scripts 587

CONTENTSxvi

16.6 Riding Mustang and JSR-223 588
Introducing JSR-223 588 ■ The script engine manager
and its script engines 589 ■ Compilable and invocable
script engines 590 ■ Polyglot programming 592

16.7 Mastering CompilerConfiguration 592
The import customizer 594 ■ The source-aware customizer 595
Writing your own customizer 597 ■ The configscript
compilation option 598

16.8 Choosing an integration mechanism 600
16.9 Summary 601

PART 3 APPLIED GROOVY ..603

17 Unit testing with Groovy 605
17.1 Getting started 606

Writing tests is easy 607 ■ GroovyTestCase: an
introduction 608 ■ Working with GroovyTestCase 610

17.2 Unit testing Groovy code 611
17.3 Unit testing Java code 614
17.4 Organizing your tests 617

Test suites 617 ■ Parameterized or data-driven testing 618
Property-based testing 619

17.5 Advanced testing techniques 621
Testing made groovy 622 ■ Stubbing and mocking 623
Using GroovyLogTestCase 628 ■ Unit testing performance 629
Code coverage with Groovy 631

17.6 IDE integration 634
Using GroovyTestSuite 635 ■ Using AllTestSuite 637

17.7 Testing with the Spock framework 638
Testing with mocks 639 ■ Data-driven Spock tests 642

17.8 Build automation 644
Build integration with Gradle 644 ■ Build integration
with Maven 647

17.9 Summary 649

CONTENTS xvii

18 Concurrent Groovy with GPars 650
18.1 Concurrency for the rest of us 651

Concurrent != parallel 651 ■ Introducing new concepts 653

18.2 Concurrent collection processing 654
Transparently concurrent collections 655
Available fork/join methods 657

18.3 Becoming more efficient with map/filter/reduce 659
18.4 Dataflow for implicit task coordination 662

Testing for deadlocks 662 ■ Dataflow on sequential
datatypes 663 ■ Final thoughts on dataflow 665

18.5 Actors for explicit task coordination 665
Using the strengths of Groovy 669

18.6 Agents for delegated task coordination 671
18.7 Concurrency in action 671
18.8 Summary 675

19 Domain-specific languages 676
19.1 Groovy’s flexible nature 677

Back to omitting parentheses 677

19.2 Variables, constants, and method injection 681
Injecting constants through the binding 682
Injecting methods into a script 684 ■ Adding imports
and static imports automatically 685 ■ Injecting methods
(revisited) 687 ■ Adding closures to the binding 688

19.3 Adding properties to numbers 690
19.4 Leveraging named arguments 693
19.5 Command chains 696
19.6 Defining your own control structures 699
19.7 Context switching with closures 710
19.8 Another technique for builders 715
19.9 Securing your DSLs 718

Introducing SecureASTCustomizer 718
The ArithmeticShell 719 ■ Stopping the execution
of your programs 721 ■ Preventing cheating with
metaprogramming 723

CONTENTSxviii

19.10 Testing and error reporting 725
19.11 Summary 731

20 The Groovy ecosystem 732
20.1 Groovy Grapes for self-contained scripts 733
20.2 Scriptom for Windows automation 735
20.3 GroovyServ for quick startup 737
20.4 Gradle for project automation 738
20.5 CodeNarc for static code analysis 741
20.6 GContracts for improved design 743
20.7 Grails for web development 745
20.8 Griffon for desktop applications 749
20.9 Gaelyk for Groovy in the cloud 752

20.10 Summary 754

appendix A Installation and documentation 756
appendix B Groovy language information 759
appendix C GDK API quick reference 762
appendix D Cheat sheets 819
appendix E Annotation parameters 825
appendix F Compiler phases 842
appendix G AST visitors 844
appendix H Type checking extensions 850
appendix I Android support 861

index 863

xix

foreword to the first edition
I first integrated Groovy into a project I was working on almost two years ago. There is
a long and rich history of using “scripting languages” as a flexible glue to stitch
together, in different ways, large modular components from a variety of frameworks.
Groovy is a particularly interesting language from this tradition, because it doesn’t shy
away from linguistic sophistication in the pursuit of concise programming, especially
in the areas around XML, where it is particularly strong. Groovy goes beyond the
“glue” tradition of the scripting world to being an effective implementation language
in its own right. In fact, while Groovy is often thought of and referred to as a scripting
language, it really is much more than that.

 It is traditional for scripting languages to have an uneasy relationship with the
underlying linguistic system in which the frameworks are implemented. In Groovy’s
case, they have been able to leverage the underlying Java model to get integration that
is smooth and efficient. And because of the linguistic similarities between Java and
Groovy, it is fairly painless for developers to shift between programming in one envi-
ronment and the other.

 Groovy in Action by Dierk König and his coauthors is a clear and detailed exposition
of what is groovy about Groovy. I’m glad to have it on my bookshelf.

JAMES GOSLING

CREATOR OF JAVA

 DECEMBER 2006

xx

preface
Nothing is more terrible than ignorance in action.

 —Johann Wolfgang von Goethe

Thinking back to January 2007 when the first edition of this book hit the shelves, feels
like time travel to the Middle Ages. The idea of using a programming language other
than Java on the Java platform was widely considered frivolous. Today, a new language
seems to pop up every other week, and we even go as far as designing languages for
specific domains (DSLs) on a per-project basis.

 This evolution of languages reflects a change in concerns. If performance were
still our utmost concern, we would all be coding in a low-level language. But if perfor-
mance is considered “good enough” for our purposes, we now turn our focus on
human approachability.

 Groovy has been a trendsetter for this development. Many Groovy features that
ease the burden of developers are now commonplace in novel languages and may
even find their way into newer versions of Java: literal declarations for common data-
types, simplified property access, null-safe dereferencing, closures, and more. Surpris-
ingly many languages have adopted Groovy’s optional typing strategy—few languages
can claim to have static and dynamic behavior at the same time, though, the way Groovy
has since version 2.

 Just like Groovy, the first edition of this book set some trends as well. The idea of hav-
ing every single listing as a self-testing piece of code resonated in the market and may be
one reason why the book is among Manning’s top-ten bestsellers of the decade.

PREFACE xxi

 The feedback for the first edition was overwhelming. We never expected to have so
many great developers speaking so nicely about our work. We have no words to express
this feeling of being proud and humbled at the same time. Most touching, though,
was the stranger who once gave Dierk a pat on the back and mumbled, “Thank you for
the book!” and then disappeared into the crowd. This book is for him.

 We are fully aware that the first edition would have never been so successful if
Groovy itself had been less appealing. The reason for Groovy’s success is easy to see: it
delivers its power in the most Java-friendly manner. It is Java’s dynamic friend.

 The development of Groovy, from version 1.0 covered in the first edition of this
book until the current version 2.4, has closed what used to be a syntax gap by pro-
viding enums, annotations, generics, the classic for loop, nested classes, varargs,
static imports, and the ability to use Groovy closures where Java 8 expects lambda
expressions.

 The Groovy project has progressed at a very high speed, not only in its core but
also at its periphery. We see, for example, new usages of compile-time meta-
programming. This core feature gets instantly applied in the Spock testing frame-
work, which in turn contributes back its “power assert” feature to the core. The com-
munity is buzzing and it has become a challenge to keep up to date with all the
developments and activities.

 It’s only natural that many readers of the first edition of Groovy in Action (or “Gina”
as we say for short) demanded an update that we are now happy to deliver as the sec-
ond edition (codename “ReGina”). Our goal in this book is not only to rework the
code examples, update the API description, and explain new features, but also to reflect
the marketplace and the growth of the ecosystem. Groovy has evolved from a niche
language to the default choice for dynamic programming on the Java platform for
millions of developers.

 Major financial organizations use Groovy to transfer billions of dollars every day,
space agencies watch the stars with the help of Groovy, and satellite live-data streams
are handled by Groovy code. Groovy is traveling the oceans, shipping containers
around the globe, helping software developers automate recurring tasks, and running
Mom’s website. We felt an obligation to provide an up-to-date, solid, and comprehen-
sive book to all these users.

 Not only did Groovy and its environment change, we authors changed as well. We
enjoyed the luxury of working on Groovy projects, introducing new team members to
the language, running workshops and tutorials, recognizing struggles (and occasion-
ally struggling ourselves), finding lots of unanticipated use cases while consulting,
exploring new practices, using the toolset in anger, and generally facing the Groovy
development reality. The book reflects these experiences.

 In this second edition, we put more emphasis on the optional typing system,
explain both dynamic and static metaprogramming in full depth, dive into type check-
ing and static compilation, cover domain-specific languages, and introduce new mod-
ules that have evolved for user interfaces, testing, XML, JSON, database programing,

PREFACExxii

Web Services, dependency management, build automation, and concurrent program-
ming as well as give you an updated overview of the Groovy ecosystem. We hope you
will find this updated book an enjoyable and rewarding read.

DIERK KÖNIG

PAUL KING

xxiii

acknowledgments
Our publisher warned us that a second edition would be much more difficult. We did
not understand that back then, but he was right. We needed to get more coauthors on
board to account for the growth of Groovy and we are very grateful that Hamlet
D’Arcy, Cédric Champeau, and Erik Pragt joined the group. Paul King invested an
enormous amount of extra time and I (Dierk) am also very grateful to him for that.

 We’re deeply indebted to our technical reviewing team: Atul Khot, David
McFarland, Jakob Mayr, Ken Shih, Paul Grebenc, Phillip Warner, Rick Wagner, Robert
O’Connor, Ronald Tischliar, Scott Ruch, Vinod Panicker, and Vladimír Oraný, with
special thanks to our technical editor Michael Smolyak and technical proofreader
Gordon Dickens.

 While the book was in development, readers could subscribe to Manning’s Early
Access Program (MEAP) to get the content early and to provide feedback. We received
so many valuable suggestions that we cannot possibly list everyone’s name, but we
would like to say a big thank you to all of you! The MEAP ran longer than any other
and while we are not proud of that record, we thank everyone for their patience and
hope that you will find the book up-to-date and worth the wait.

 Other friends helped with the book in one way or another: Andres Almiray, Bob
Brown, Nick Chase, Andy Clement, Scott Davis, Marc Guillemot, Dr. Urs Hengartner,
Arturo Herrero, Martin Huber, Roshan Dawrani, Wim Deblauwe, Dean DeChambeau,
Gordon Dickens, Andrew Eisenberg, Jeremy Flowers, Dave Klein, Rupin Kotecha,
Kenneth Kousen, Peter Ledbrook, Mac Liaw, Johannes Link, Joshua Logan, Chris Mair,
Tsuyoshi Miyake, Vaclav Pech, Graeme Rocher, Baruch Sadogursky, Uwe Sauerbrei,

ACKNOWLEDGMENTSxxiv

Erik Schwalbe, Larry Seltzer, Jim Shingler, Dan Sline, Glen Smith, David Stuve, Andre
Steingress, Jochen Theodorou, Marija Tudor, Craig Walls, Dr. Hans-Dirk Walter, and
Geertjan Wielenga.

 The book would never had made it to the shelves without the support and guidance
of everyone at Manning, especially our publisher Marjan Bace, our editors Nermina
Miller and Maureen Spencer, and all the other great people who worked with us:
Jodie Allen, Luke Bace, Jeff Bleiel, Olivia Booth, Candace Gillhoolley, Todd Green,
Steven Hong, Cynthia Kane, Emily Macel, Elizabeth Martin, Tara McGoldrick Walsh,
Mary Piergies, Christina Rudloff, Mike Stephens, and Kevin Sullivan.

 Finally, very special thanks to James Gosling for writing the foreword to the first
edition of Groovy in Action.

 But most of all, we thank our families for their ongoing encouragement to pursue
our ideas, their patience when we were once again physically or mentally absent, and
their love that gives us a purpose in life. We love you.

xxv

about this book
Groovy in Action, Second Edition describes the Groovy language, presents the library
classes and methods that Groovy adds to the standard Java Development Kit, and leads
you through a number of topics that you are likely to encounter in your daily develop-
ment work. The book has three parts:

■ Part 1 The Groovy language
■ Part 2 Around the Groovy library
■ Part 3 Applied Groovy

An introductory chapter explains what Groovy is and then part 1 starts with a broad
overview of Groovy’s language features, before going into more depth about scalar and
collective datatypes. The language description includes an explanation of the closure
concept that is ubiquitous in Groovy, describing how it relates to and distinguishes
itself from control structures. We present Groovy’s model of object-orientation and its
dynamic capabilities at both runtime and compile-time. Part 1 closes with a surprise:
You can use Groovy as a static language as well!

 Part 2 begins the library description with a presentation of Groovy’s builder con-
cept and its various implementations. An explanation of the GDK follows, with
Groovy’s enhancements to the Java standard library. This is the “beef” of the library
description in part 2. The Groovy library shines with simple but powerful support
for database programming and XML and JSON handling, and we include a detailed
exposition of both topics. Another big advantage of Groovy is its all-out seamless

ABOUT THIS BOOKxxvi

integration with Java, and we explain the options provided by the Groovy library for
setting this into action.

 If part 1 was a tutorial and part 2 a reference, part 3 is about typical use cases for
Groovy. It starts with a thorough exposition of how to use Groovy for test automa-
tion. Testing is an important topic in itself, but with Groovy even more so since
Groovy developers seem to be very quality-oriented and even in otherwise plain-Java
projects, Groovy is often used for testing because it is so convenient. Next, we want
to use Groovy on multi-core machines and thus go into concurrent programming
with Groovy. Another much-requested topic is using Groovy for domain specific lan-
guages, which we cover in a full, dedicated chapter. Part 3 ends with an overview of
the Groovy ecosystem.

 The book closes with an extensive series of helpful appendixes, which are intended
to serve as quick references, cheat sheets, and detailed technical descriptions.

Who should read this book?
This book is for everyone who wants to learn Groovy as a new dynamic programming
language. Existing Groovy users can use it to deepen their knowledge; and both new
and experienced programmers can use it as a black-and-white reference. We found
ourselves going to our own book to look up details that we had forgotten. Newcomers
to Groovy will need a basic understanding of Java since Groovy is completely depen-
dent on it; Java basics are not covered in our book.

 Topics have been included that will make reading and understanding easier, but
are not mandatory prerequisites: patterns of object-oriented design, Ant, Maven,
JUnit, HTML, XML, JSON, Swing, and JavaFX. It is beneficial—but not required—to
have been exposed to some other scripting language. This enables you to connect
what you read to what you already know. Where appropriate, we point out similarities
and differences between Groovy and other languages.

What’s new in the second edition?
When starting the second edition, we considered adding visual clues or icons to the
book so readers could quickly see what had changed from the first edition. We had to
give up on that idea or the whole book would have been full of markers since there is
hardly any paragraph that hasn’t changed!

 The second edition is a full rewrite. We dropped some chapters, reorganized others,
and added new ones, so the book now has 20 chapters, up from 16, and a few hundred
additional pages of genuinely new content. These changes reflect the evolution of the
language and its use in the market.

 Tackling the task of covering such a big topic needs many hands and we were very
lucky that Hamlet Darcy, Cédric Champeau, and Erik Pragt joined the team. Hamlet
authored the new chapters 9 “AST Transformations” and 20 “The Groovy Ecosystem.”
Cédric contributed his deep knowledge of Groovy internals to the new chapter 10
“Groovy as a static language” and helped to fine-tune chapters 7, 9, and 16. Erik got

ABOUT THIS BOOK xxvii

the laborious task of going through all changes to the Groovy standard library for
chapter 12 “Working with the GDK” and fundamentally revised chapter 17 “Unit test-
ing with Groovy” to cover the popular Spock testing framework.

 Guillaume Laforge revised chapter 16 “Integrating Groovy” and shaped new chap-
ter 19 “Domain Specific Languages (DSLs)” to address this important usage of Groovy.

 Dierk König added chapter 19 “Concurrent Groovy with GPars” to show how well
Groovy fits into the multi-core era. He also thoroughly revised and updated the core
“language” chapters 1 through 6. Former chapter 7 was split into “Object orientation,
Groovy style,” and a new chapter 8 “Dynamic Programming with Groovy.”

 Paul King revised the “library” chapters 11 “Working with builders,” 13 “Database
programming with Groovy,” and split the former XML chapter 14 into “Working with
XML and JSON” and 15 “Interacting with Web Services” and extended the content to
account for the rising importance of these Groovy usages. He also did the enormous
work of going through every single page of the book to ensure consistency in style, word-
ing, feel, and appearance. With so many authors and such diverse topics it is very diffi-
cult to keep the book coherent. If we finally managed to achieve this, it is thanks to Paul.

Code conventions and downloads
This book provides copious examples that show how you can make use of each of the
topics covered. Source code in listings or in text appears in a fixed-width font like
this to separate it from ordinary text. In addition, class and method names, object
properties, and other code-related terms and content in text are presented using
fixed-width font.

 Occasionally, code is italicized, as in reference.dump(). In this case reference
should not be entered literally but replaced with the content that is required, such as
the appropriate reference.

 Where the text contains the pronouns “I” and “we”, the “we” refers to all the
authors. “I” refers to the lead author of the respective chapter.

 Most of the code examples contain Groovy code. This code is very compact so we
present it “as is” without any omissions. Unless stated otherwise, you can copy and
paste it into a new file and run it right away. In rare cases, when this wasn’t possible, we
have used … (ellipses).

 Java, HTML, XML, and command-line input can be verbose. In many cases, the
original source code (available online) has been reformatted; we’ve added line breaks
and reworked indentation to accommodate the page space available in the book. In
rare cases, when even this was not enough, line-continuation markers were added.

 Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered cueballs link to additional explanations that follow
the listing.

 You can download the source code for all of the examples in the book from the
publisher’s website at www.manning.com/GroovyinActionSecondEdition.

ABOUT THIS BOOKxxviii

Keeping up to date
The world doesn’t stop turning when you finish writing a book, and getting the book
through production also takes time. Therefore, some of the information in any techni-
cal book becomes quickly outdated, especially in the dynamic world of agile languages.

 This book covers Groovy 2.4. Groovy will see numerous improvements, and by the
time you read this, it’s possible that an updated version will have become available.
New Groovy versions always come with a detailed list of changes. It is unlikely that any
of the core Groovy concepts as laid out in this book will change significantly in the
near future; and even then the emphasis is likely to be on additional concepts and fea-
tures. Groovy has earned a reputation of caring deeply about backward compatibility.
This outlook makes the book a wise investment, even in a rapidly changing world.

 We will do our best to keep the online resources for this book reasonably up to
date and provide information about language and library changes as the project
moves on. Please check for updates on the book’s web page at www.manning.com/
GroovyinActionSecondEdition.

Author Online
Purchase of Groovy in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/Groovyin-
ActionSecondEdition. This page provides information on how to get on the forum
once you are registered, what kind of help is available, and the rules of conduct on
the forum. It also provides links to the source code for the examples in the book,
errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the cover illustration
The figure on the cover of Groovy in Action, Second Edition is a “Danzerina del Japon,” a
Japanese dancer, taken from a Spanish compendium of regional dress customs first
published in Madrid in 1799. While the artist may have captured the “spirit” of a Japa-
nese dancer in his drawing, the illustration does not accurately portray the looks,
dress, or comportment of a Japanese woman or geisha of the time, compared to Japa-
nese drawings from the same period. The artwork in this collection was clearly not
researched first hand!

ABOUT THIS BOOK xxix

The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R.
Obra muy util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored this
illustration by hand, the “exactitude” of their execution is evident in this drawing. The
“Danzerina del Japon” is just one of many figures in this colorful collection. Travel for
pleasure was a relatively new phenomenon at the time and books such as this one
were popular, introducing both the tourist as well as the armchair traveler to the
exotic inhabitants, real and imagined, of other regions of the world.

 Dress codes have changed since then and the diversity by nation and by region, so
rich at the time, has faded away. It is now often hard to tell the inhabitant of one con-
tinent from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interesting
intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two centu-
ries ago, brought back to life by the pictures from this collection.

xxx

about the authors
DIERK KÖNIG has worked for over 20 years as a professional software developer,
architect, trainer, and consultant. Through his publications, conference appear-
ances, trainings, workshops, and consulting activities, Dierk has reached more devel-
opers than he ever thought possible. He has worked with Canoo Engineering AG,
Basle, Switzerland, since 2000, where he is a cofounder and enjoys being part of a
thriving organization.

 Dierk contributes to many open source projects, including Groovy, Grails, Open-
Dolphin, Frege, and CanooWebTest. He joined the Groovy project in 2004 and has
worked as a committer ever since. He presented Groovy to win the JAX Innovation
Award 2007 and won the JAX Developer Challenge 2009 with his team.

 He is an acknowledged reviewer and contributor to numerous books, including
the classic Extreme Programming Explained (Kent Beck), Test-Driven Development (Kent
Beck), Agile Development in the Large (Jutta Eckstein), Unit Testing in Java (Johannes
Link), JUnit and Fit (Frank Westphal), Refactoring in Large Software Projects (Martin
Lippert and Stephen Roock), The Definitive Guide to Grails (Graeme Rocher), and Grails
in Action (Glen Smith, Peter Ledbrook).

 In the course of authoring this second edition, Dierk became a happy husband
and a proud father of a girl and a boy. You can follow him on twitter as @mittie.

DR. PAUL KING’S career spans technical and managerial roles in a number of organi-
zations, underpinned by deep knowledge of the information technology and tele-
communications markets and a passion for the creation of innovative organizations.

ABOUT THE AUTHORS xxxi

Throughout his career, Paul has provided technical and strategic consulting to hun-
dreds of organizations in the U.S. and Asia Pacific. The early stages of Paul’s career
were highlighted by his contributions to various research fields, including object-
oriented software development, formal methods, telecommunications, and distrib-
uted systems. He has had numerous publications at international conferences and
in journals and trade magazines. He is an award-winning author and sought-after
speaker at conferences.

 Currently, Paul leads ASERT (Advanced Software Engineering, Research & Train-
ing), which is recognized as a world-class center of expertise in the areas of middle-
ware technology, agile development, and internet application development and
deployment. ASERT has experience teaching thousands of students in more than 15
countries, and has provided consulting services and development assistance through-
out Asia Pacific to high-profile startups and government e-commerce sites. In his
spare time, Paul is a taxi driver and homework assistant for his seven children and two
grandchildren. You can follow him on twitter as @paulk_asert.

GUILLAUME LAFORGE has been the official Groovy project manager since the end of
2004, after having been a contributor and later a core committer on the project. He is
also the specification lead for JSR-241, the ongoing effort to standardize the Groovy
language through Sun’s Java Community Process. Guillaume is Groovy’s “public face”
and often responds to interviews regarding Groovy and presents his project at confer-
ences around the world, such as at JavaOne or Devoxx, where he recently spoke about
how scripting can simplify enterprise development. Guillaume cofounded the G2One
company, which focused on and further developed the Groovy and Grails technolo-
gies, later acquired by SpringSource; also VMware and its Pivotal spin-off. Guillaume
recently joined Restlet as Product Ninja and Advocate.

CÉDRIC CHAMPEAU is a member of the Groovy core team. He is a passionate developer
who started writing programs at the age of eight and learned it the hard way by manu-
ally typing magazine listings into an Amstrad PC1512. He worked several years in natu-
ral language processing where he used Groovy in multiple contexts, from a workflow
engine to a DSL for linguists, and Lucene custom scoring. This is how he dived into
the internals of the language and started contributing before becoming one of the
core team members. He implemented many advanced Groovy features like compila-
tion customizers, static compilation, traits, the markup template engine, and the
recent support for Android.

HAMLET D’ARCY is a software engineer at Microsoft, founder of the Basel-based Hack-
ergarten open source coding group, and can be found speaking at local and interna-
tional user groups and conferences. He’s a committer on the Groovy and CodeNarc
projects and a contributor on a number of other projects (including the IDEA Groovy
Plugin). He’s passionate about learning new languages and different ways of thinking
about problems. He blogs regularly at http://hamletdarcy.blogspot.com.

ABOUT THE AUTHORSxxxii

ERIK PRAGT is a passionate software developer with a broad range of experience in
static languages like Java and Scala, and dynamic languages like Groovy, JavaScript,
and Python. Having worked as a consultant for a broad range of customers, mostly in
the Telecom, ISP, and banking sectors, Erik is now an independent freelance consul-
tant. He founded the Dutch Groovy and Grails user group, and is a regular confer-
ence speaker and trainer. Erik spends most of his free time working on open source
software. In the limited time he’s not sitting behind the computer he can be found in
the gym, riding his motorcycle, or diving, always looking for new inspiration, which he
shares on twitter at @epragt.

JON SKEET Jon Skeet is a software engineer working for Google in London. He is prob-
ably best known for his contributions on Stack Overflow. He blogs, tweets (@jon-
skeet), speaks at conferences, and generally says too much and listens too little. For
some years now, his primary open source contribution to the world has been Noda
Time, a better .NET date and time API. He is the author of Manning’s C# in Depth,
Third Edition.

