
ix

contents
preface xix
preface to the first edition xxi
acknowledgments xxiii
about this book xxv
about the cover illustration xxx

PART 1 RUBY FOUNDATIONS..1

1 Bootstrapping your Ruby literacy 3
1.1 Basic Ruby language literacy 4

A Ruby syntax survival kit 5 ■ The variety of Ruby identifiers 7
Method calls, messages, and Ruby objects 8 ■ Writing and saving
a simple program 10 ■ Feeding the program to Ruby 11
Keyboard and file I/O 13

1.2 Anatomy of the Ruby installation 15
The Ruby standard library subdirectory
(RbConfig::CONFIG[rubylibdir]) 17 ■ The C extensions
directory (RbConfig::CONFIG[archdir]) 17 ■ The site_ruby
(RbConfig::CONFIG[sitedir]) and vendor_ruby
(RbConfig::CONFIG[vendordir]) directories 17
The gems directory 18

CONTENTSx

1.3 Ruby extensions and programming libraries 18
Loading external files and extensions 18 ■ “Load”-ing a file in
the default load path 19 ■ “Require”-ing a feature 21
require_relative 22

1.4 Out-of-the-box Ruby tools and applications 22
Interpreter command-line switches 23 ■ A closer look at interactive
Ruby interpretation with irb 26 ■ ri and RDoc 28
The rake task-management utility 29 ■ Installing packages
with the gem command 31

1.5 Summary 33

2 Objects, methods, and local variables 34
2.1 Talking to objects 35

Ruby and object orientation 35 ■ Creating a generic object 36
Methods that take arguments 38 ■ The return value of
a method 39

2.2 Crafting an object: The behavior of a ticket 40
The ticket object, behavior first 40 ■ Querying the ticket object 41
Shortening the ticket code via string interpolation 42
Ticket availability: Expressing Boolean state in a method 42

2.3 The innate behaviors of an object 44
Identifying objects uniquely with the object_id method 45
Querying an object’s abilities with the respond_to? method 46
Sending messages to objects with the send method 47

2.4 A close look at method arguments 48
Required and optional arguments 48 ■ Default values for
arguments 49 ■ Order of parameters and arguments 50
What you can’t do in argument lists 52

2.5 Local variables and variable assignment 54
Variables, objects, and references 55 ■ References in variable
assignment and reassignment 57 ■ References and
method arguments 58 ■ Local variables and the
things that look like them 59

2.6 Summary 60

3 Organizing objects with classes 62
3.1 Classes and instances 63

Instance methods 64 ■ Overriding methods 64
Reopening classes 65

CONTENTS xi

3.2 Instance variables and object state 67
Initializing an object with state 68

3.3 Setter methods 70
The equal sign (=) in method names 70 ■ Syntactic sugar for
assignment-like methods 72 ■ Setter methods unleashed 72

3.4 Attributes and the attr_* method family 74
Automating the creation of attributes 75 ■ Summary of
attr_* methods 77

3.5 Inheritance and the Ruby class hierarchy 77
Single inheritance: One to a customer 79 ■ Object ancestry and the
not-so-missing link: The Object class 79 ■ El Viejo’s older brother:
BasicObject 80

3.6 Classes as objects and message receivers 81
Creating class objects 81 ■ How class objects call methods 82
A singleton method by any other name… 83 ■ When, and why, to
write a class method 84 ■ Class methods vs. instance methods 85

3.7 Constants up close 86
Basic use of constants 87 ■ Reassigning vs. modifying
constants 88

3.8 Nature vs. nurture in Ruby objects 89
3.9 Summary 91

4 Modules and program organization 92
4.1 Basics of module creation and use 93

A module encapsulating “stacklikeness” 94 ■ Mixing a module
into a class 96 ■ Using the module further 98

4.2 Modules, classes, and method lookup 99
Illustrating the basics of method lookup 100 ■ Defining the same
method more than once 103 ■ How prepend works 105
The rules of method lookup summarized 106 ■ Going up the
method search path with super 107

4.3 The method_missing method 109
Combining method_missing and super 110

4.4 Class/module design and naming 114
Mix-ins and/or inheritance 114 ■ Nesting modules
and classes 116

4.5 Summary 117

CONTENTSxii

5 The default object (self), scope, and visibility 119
5.1 Understanding self, the current/default object 120

Who gets to be self, and where 120 ■ The top-level self object 122
Self inside class, module, and method definitions 123 ■ Self as the
default receiver of messages 126 ■ Resolving instance variables
through self 128

5.2 Determining scope 129
Global scope and global variables 130 ■ Local scope 132
The interaction between local scope and self 135 ■ Scope and
resolution of constants 136 ■ Class variable syntax, scope,
and visibility 138

5.3 Deploying method-access rules 144
Private methods 145 ■ Protected methods 148

5.4 Writing and using top-level methods 149
Defining a top-level method 149 ■ Predefined (built-in)
top-level methods 150

5.5 Summary 151

6 Control-flow techniques 152
6.1 Conditional code execution 153

The if keyword and friends 153 ■ Assignment syntax in
condition bodies and tests 157 ■ case statements 160

6.2 Repeating actions with loops 164
Unconditional looping with the loop method 165
Conditional looping with the while and until keywords 166
Looping based on a list of values 168

6.3 Iterators and code blocks 168
The ingredients of iteration 168 ■ Iteration, home-style 169
The anatomy of a method call 170 ■ Curly braces vs. do/end
in code block syntax 170 ■ Implementing times 171
The importance of being each 173 ■ From each to map 175
Block parameters and variable scope 176

6.4 Error handling and exceptions 179
Raising and rescuing exceptions 180 ■ The rescue keyword
to the rescue! 181 ■ Raising exceptions explicitly 182
Capturing an exception in a rescue clause 183 ■ The ensure
clause 185 ■ Creating your own exception classes 186

6.5 Summary 187

CONTENTS xiii

PART 2 BUILT-IN CLASSES AND MODULES....................189

7 Built-in essentials 191
7.1 Ruby’s literal constructors 192
7.2 Recurrent syntactic sugar 193

Defining operators by defining methods 194
Customizing unary operators 196

7.3 Bang (!) methods and “danger” 197
Destructive (receiver-changing) effects as danger 197
Destructiveness and “danger” vary independently 198

7.4 Built-in and custom to_* (conversion) methods 200
String conversion: to_s 200 ■ Array conversion with to_a and the
* operator 202 ■ Numerical conversion with to_i and to_f 203
Role-playing to_* methods 205

7.5 Boolean states, Boolean objects, and nil 207
True and false as states 207 ■ true and false as objects 209
The special object nil 211

7.6 Comparing two objects 212
Equality tests 212 ■ Comparisons and the
Comparable module 213

7.7 Inspecting object capabilities 215
Listing an object’s methods 215 ■ Querying class and
module objects 216 ■ Filtered and selected method lists 217

7.8 Summary 217

8 Strings, symbols, and other scalar objects 219
8.1 Working with strings 220

String notation 220 ■ Basic string manipulation 224
Querying strings 228 ■ String comparison and ordering 230
String transformation 231 ■ String conversions 234
String encoding: A brief introduction 235

8.2 Symbols and their uses 237
Chief characteristics of symbols 237 ■ Symbols and
identifiers 238 ■ Symbols in practice 240 ■ Strings and
symbols in comparison 242

8.3 Numerical objects 243
Numerical classes 244 ■ Performing arithmetic operations 244

CONTENTSxiv

8.4 Times and dates 246
Instantiating date/time objects 246 ■ Date/time query
methods 249 ■ Date/time formatting methods 249
Date/time conversion methods 251

8.5 Summary 252

9 Collection and container objects 254
9.1 Arrays and hashes in comparison 255
9.2 Collection handling with arrays 256

Creating a new array 257 ■ Inserting, retrieving, and removing
array elements 261 ■ Combining arrays with other arrays 264
Array transformations 265 ■ Array querying 266

9.3 Hashes 267
Creating a new hash 268 ■ Inserting, retrieving, and removing
hash pairs 269 ■ Specifying default hash values and
behavior 271 ■ Combining hashes with other hashes 272
Hash transformations 273 ■ Hash querying 274
Hashes as final method arguments 275 ■ A detour back to
argument syntax: Named (keyword) arguments 276

9.4 Ranges 277
Creating a range 278 ■ Range-inclusion logic 279

9.5 Sets 281
Set creation 281 ■ Manipulating set elements 282
Subsets and supersets 284

9.6 Summary 285

10 Collections central: Enumerable and Enumerator 286
10.1 Gaining enumerability through each 287
10.2 Enumerable Boolean queries 289
10.3 Enumerable searching and selecting 291

Getting the first match with find 292 ■ Getting all matches with
find_all (a.k.a. select) and reject 293 ■ Selecting on threequal
matches with grep 294 ■ Organizing selection results with
group_by and partition 295

10.4 Element-wise enumerable operations 297
The first method 297 ■ The take and drop methods 298
The min and max methods 299

CONTENTS xv

10.5 Relatives of each 300
reverse_each 300 ■ The each_with_index method (and
each.with_index) 301 ■ The each_slice and each_cons
methods 302 ■ The cycle method 303 ■ Enumerable reduction
with inject 303

10.6 The map method 304
The return value of map 305 ■ In-place mapping
with map! 306

10.7 Strings as quasi-enumerables 306

10.8 Sorting enumerables 308
Where the Comparable module fits into enumerable sorting
(or doesn’t) 310 ■ Defining sort-order logic with a block 310
Concise sorting with sort_by 311

10.9 Enumerators and the next dimension of
enumerability 311
Creating enumerators with a code block 312 ■ Attaching
enumerators to other objects 314 ■ Implicit creation of enumerators
by blockless iterator calls 316

10.10 Enumerator semantics and uses 316
How to use an enumerator’s each method 316 ■ Protecting objects
with enumerators 318 ■ Fine-grained iteration with
enumerators 320 ■ Adding enumerability with an
enumerator 320

10.11 Enumerator method chaining 322
Economizing on intermediate objects 322 ■ Indexing enumerables
with with_index 324 ■ Exclusive-or operations on strings
with enumerators 324

10.12 Lazy enumerators 326
FizzBuzz with a lazy enumerator 327

10.13 Summary 328

11 Regular expressions and regexp-based string operations 330
11.1 What are regular expressions? 331

11.2 Writing regular expressions 331
Seeing patterns 331 ■ Simple matching with literal
regular expressions 332

CONTENTSxvi

11.3 Building a pattern in a regular expression 333
Literal characters in patterns 334 ■ The dot wildcard
character (.) 334 ■ Character classes 334

11.4 Matching, substring captures, and MatchData 336
Capturing submatches with parentheses 336 ■ Match success
and failure 338 ■ Two ways of getting the captures 339
Other MatchData information 341

11.5 Fine-tuning regular expressions with quantifiers, anchors,
and modifiers 342
Constraining matches with quantifiers 342 ■ Greedy (and
non-greedy) quantifiers 344 ■ Regular expression anchors
and assertions 346 ■ Modifiers 349

11.6 Converting strings and regular expressions
to each other 350
String-to-regexp idioms 351 ■ Going from a regular
expression to a string 352

11.7 Common methods that use regular expressions 353
String#scan 353 ■ String#split 355 ■ sub/sub! and
gsub/gsub! 356 ■ Case equality and grep 357

11.8 Summary 359

12 File and I/O operations 360
12.1 How Ruby’s I/O system is put together 361

The IO class 361 ■ IO objects as enumerables 362
STDIN, STDOUT, STDERR 363 ■ A little more about
keyboard input 364

12.2 Basic file operations 364
The basics of reading from files 365 ■ Line-based file
reading 365 ■ Byte- and character-based file reading 366
Seeking and querying file position 367 ■ Reading files with File
class methods 368 ■ Writing to files 369 ■ Using blocks to scope
file operations 370 ■ File enumerability 371 ■ File I/O
exceptions and errors 372

12.3 Querying IO and File objects 373
Getting information from the File class and the FileTest module 373
Deriving file information with File::Stat 374

12.4 Directory manipulation with the Dir class 375
Reading a directory’s entries 375 ■ Directory manipulation
and querying 378

CONTENTS xvii

12.5 File tools from the standard library 379
The FileUtils module 379 ■ The Pathname class 381
The StringIO class 382 ■ The open-uri library 384

12.6 Summary 384

PART 3 RUBY DYNAMICS ..387

13 Object individuation 389
13.1 Where the singleton methods are:

The singleton class 390
Dual determination through singleton classes 391 ■ Examining
and modifying a singleton class directly 392 ■ Singleton classes on
the method-lookup path 394 ■ The singleton_class method 398
Class methods in (even more) depth 399

13.2 Modifying Ruby’s core classes and modules 400
The risks of changing core functionality 401 ■ Additive
changes 405 ■ Pass-through overrides 406 ■ Per-object changes
with extend 408 ■ Using refinements to affect core behavior 411

13.3 BasicObject as ancestor and class 412
Using BasicObject 413 ■ Implementing a subclass of
BasicObject 414

13.4 Summary 416

14 Callable and runnable objects 418
14.1 Basic anonymous functions: The Proc class 419

Proc objects 419 ■ Procs and blocks and how they differ 420
Block-proc conversions 422 ■ Using Symbol#to_proc for
conciseness 424 ■ Procs as closures 426 ■ Proc parameters
and arguments 428

14.2 Creating functions with lambda and -> 428

14.3 Methods as objects 430
Capturing Method objects 430 ■ The rationale for
methods as objects 431

14.4 The eval family of methods 433
Executing arbitrary strings as code with eval 433 ■ The dangers
of eval 435 ■ The instance_eval method 435 ■ Using class_eval
(a.k.a. module_eval) 437

CONTENTSxviii

14.5 Parallel execution with threads 438
Killing, stopping, and starting threads 440 ■ A threaded date
server 441 ■ Writing a chat server using sockets and threads 443
Threads and variables 445 ■ Manipulating thread keys 446

14.6 Issuing system commands from inside
Ruby programs 449
The system method and backticks 449 ■ Communicating with
programs via open and popen3 451

14.7 Summary 454

15 Callbacks, hooks, and runtime introspection 456
15.1 Callbacks and hooks 457

Intercepting unrecognized messages with method_missing 457
Trapping include and prepend operations 461 ■ Intercepting
extend 462 ■ Intercepting inheritance with Class#inherited 464
The Module#const_missing method 465 ■ The method_added
and singleton_method_added methods 465

15.2 Interpreting object capability queries 467
Listing an object’s non-private methods 468 ■ Listing private and
protected methods 470 ■ Getting class and module instance
methods 471 ■ Listing objects’ singleton methods 473

15.3 Introspection of variables and constants 474
Listing local and global variables 475
Listing instance variables 475

15.4 Tracing execution 476
Examining the stack trace with caller 476 ■ Writing a tool
for parsing stack traces 477

15.5 Callbacks and method inspection in practice 480
MicroTest background: MiniTest 480 ■ Specifying and
implementing MicroTest 482

15.6 Summary 485

index 487

