
Getting MEAN
with Mongo, Express,

Angular, and Node

SIMON HOLMES

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Susie Pitzen, Susanna Kline,
20 Baldwin Road Karen Miller
PO Box 761 Technical development editor: Marius Butuc
Shelter Island, NY 11964 Copyeditor: Jodie Allen

Proofreader: Alyson Brener
Technical proofreaders: Steven Jenkins, Deepak Vohra

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617292033
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

v

brief contents
PART 1 SETTING THE BASELINE ...1

1 ■ Introducing full-stack development 3

2 ■ Designing a MEAN stack architecture 24

PART 2 BUILDING A NODE WEB APPLICATION...........................51

3 ■ Creating and setting up a MEAN project 53

4 ■ Building a static site with Node and Express 80

5 ■ Building a data model with MongoDB
and Mongoose 120

6 ■ Writing a REST API: Exposing the MongoDB
database to the application 160

7 ■ Consuming a REST API: Using an API from
inside Express 202

PART 3 ADDING A DYNAMIC FRONT END WITH ANGULAR.........241

8 ■ Adding Angular components to an Express
application 243

BRIEF CONTENTSvi

9 ■ Building a single-page application with Angular:
Foundations 276

10 ■ Building an SPA with Angular: The next level 304

PART 4 MANAGING AUTHENTICATION AND USER SESSIONS......347

11 ■ Authenticating users, managing sessions,
and securing APIs 349

vii

contents
preface xv
acknowledgments xvii
about this book xix

PART 1 SETTING THE BASELINE......................................1

1 Introducing full-stack development 3
1.1 Why learn the full stack? 4

A very brief history of web development 4 ■ The trend toward
full-stack developers 6 ■ Benefits of full-stack development 6
Why the MEAN stack specifically? 7

1.2 Introducing Node.js: The web server/platform 7
JavaScript: The single language through the stack 8
Fast, efficient, and scalable 8 ■ Using prebuilt packages
via npm 11

1.3 Introducing Express: The framework 12
Easing your server setup 12 ■ Routing URLs to responses 12
Views: HTML responses 12 ■ Remembering visitors with
session support 13

CONTENTSviii

1.4 Introducing MongoDB: The database 13
Relational versus document databases 13 ■ MongoDB
documents: JavaScript data store 14 ■ More than just
a document database 14 ■ What is MongoDB not
good for? 15 ■ Mongoose for data modeling and more 15

1.5 Introducing AngularJS: The front-end framework 16
jQuery versus AngularJS 16 ■ Two-way data binding: Working
with data in a page 16 ■ Using AngularJS to load new pages 18
Are there any downsides? 18

1.6 Supporting cast 19
Twitter Bootstrap for user interface 19 ■ Git for source control 20
Hosting with Heroku 20

1.7 Putting it together with a practical example 21
Introducing the example application 21 ■ How the MEAN
stack components work together 22

1.8 Summary 23

2 Designing a MEAN stack architecture 24
2.1 A common MEAN stack architecture 25
2.2 Looking beyond SPAs 26

Hard to crawl 26 ■ Analytics and browser history 27
Speed of initial load 27 ■ To SPA or not to SPA? 28

2.3 Designing a flexible MEAN architecture 28
Requirements for a blog engine 29 ■ A blog engine
architecture 30 ■ Best practice: Build an internal API
for a data layer 33

2.4 Planning a real application 34
Planning the application at a high level 35 ■ Architecting the
application 36 ■ Wrapping everything in an Express project 38
The end product 39

2.5 Breaking the development into stages 40
Rapid prototype development stages 40 ■ The steps to
build Loc8r 41

2.6 Hardware architecture 47
Development hardware 47 ■ Production hardware 47

2.7 Summary 49

CONTENTS ix

PART 2 BUILDING A NODE WEB APPLICATION51

3 Creating and setting up a MEAN project 53
3.1 A brief look at Express, Node, and npm 55

Defining packages with package.json 55 ■ Installing Node
dependencies with npm 56

3.2 Creating an Express project 58
Installing the pieces 58 ■ Creating a project folder 58
Configuring an Express installation 59 ■ Creating an Express
project and trying it out 61 ■ Restarting the application 62

3.3 Modifying Express for MVC 64
A bird’s eye view of MVC 64 ■ Changing the folder structure 65
Using the new views and routes folders 66 ■ Splitting controllers
from routes 67

3.4 Import Bootstrap for quick, responsive layouts 70
Download Bootstrap and add it to the application 70
Using Bootstrap in the application 70

3.5 Make it live on Heroku 74
Getting Heroku set up 74 ■ Pushing the site live using Git 76

3.6 Summary 79

4 Building a static site with Node and Express 80
4.1 Defining the routes in Express 82

Different controller files for different collections 83

4.2 Building basic controllers 84
Setting up controllers 85 ■ Testing the controllers and routes 86

4.3 Creating some views 87
A look at Bootstrap 88 ■ Setting up the HTML framework with
Jade templates and Bootstrap 89 ■ Building a template 93

4.4 Adding the rest of the views 98
Details page 98 ■ Adding Review page 102
The About page 104

4.5 Take the data out of the views and make them
smarter 106
How to move data from the view to the controller 107
Dealing with complex, repeating data 109 ■ Manipulating the
data and view with code 113 ■ Using includes and mixins to

CONTENTSx

create reusable layout components 113 ■ The finished
homepage 115 ■ Updating the rest of the views and
controllers 117

4.6 Summary 119

5 Building a data model with MongoDB and Mongoose 120
5.1 Connecting the Express application to MongoDB

using Mongoose 122
Adding Mongoose to our application 123 ■ Adding a Mongoose
connection to our application 124

5.2 Why model the data? 130
What is Mongoose and how does it work? 131

5.3 Defining simple Mongoose schemas 134
The basics of setting up a schema 135 ■ Using geographic data
in MongoDB and Mongoose 137 ■ Creating more complex
schemas with subdocuments 138 ■ Final schema 143
Compiling Mongoose schemas into models 145

5.4 Using the MongoDB shell to create a MongoDB database
and add data 147
MongoDB shell basics 147 ■ Creating a MongoDB
database 148

5.5 Getting our database live 152
Setting up MongoLab and getting the database URI 152
Pushing up the data 154 ■ Making the application use
the right database 156

5.6 Summary 159

6 Writing a REST API: Exposing the MongoDB
database to the application 160
6.1 The rules of a REST API 161

Request URLs 162 ■ Request methods 163 ■ Responses and
status codes 165

6.2 Setting up the API in Express 167
Creating the routes 167 ■ Creating the controller
placeholders 170 ■ Including the model 171
Testing the API 172

CONTENTS xi

6.3 GET methods: Reading data from MongoDB 172
Finding a single document in MongoDB using Mongoose 173
Finding a single subdocument based on IDs 177
Finding multiple documents with geospatial queries 180

6.4 POST methods: Adding data to MongoDB 187
Creating new documents in MongoDB 188 ■ Creating new
subdocuments in MongoDB 190

6.5 PUT methods: Updating data in MongoDB 193
Using Mongoose to update a document in MongoDB 194
Updating an existing subdocument in MongoDB 196

6.6 DELETE method: Deleting data from MongoDB 197
Deleting documents in MongoDB 198 ■ Deleting a subdocument
from MongoDB 199

6.7 Summary 200

7 Consuming a REST API: Using an API from
inside Express 202
7.1 How to call an API from Express 203

Adding the request module to our project 203 ■ Setting up
default options 204 ■ Using the request module 204

7.2 Using lists of data from an API: The Loc8r
homepage 206
Separating concerns: Moving the rendering into a
named function 207 ■ Building the API request 207
Using the API response data 208 ■ Modifying data before
displaying it: Fixing the distances 209 ■ Catching errors
returned by the API 212

7.3 Getting single documents from an API: The Loc8r
Details page 216
Setting URLs and routes to access specific MongoDB
documents 216 ■ Separating concerns: Moving the rendering
into a named function 218 ■ Querying the API using a unique ID
from a URL parameter 219 ■ Passing the data from the API to
the view 220 ■ Debugging and fixing the view errors 221
Creating status-specific error pages 223

7.4 Adding data to the database via the API:
Add Loc8r reviews 226
Setting up the routing and views 227 ■ POSTing the review
data to the API 231

CONTENTSxii

7.5 Protecting data integrity with data validation 233
Validating at the schema level with Mongoose 234 ■ Validating at
the application level with Node and Express 237 ■ Validating in
the browser with jQuery 239

7.6 Summary 240

PART 3 ADDING A DYNAMIC FRONT END
WITH ANGULAR ...241

8 Adding Angular components to an Express application 243
8.1 Getting Angular up and running 244

Uncovering two-way data binding 245 ■ Setting up for greatness
(and JavaScript code) 248

8.2 Displaying and filtering the homepage list 251
Adding Angular to an Express application 251 ■ Moving data
delivery from Express to Angular 252 ■ Using Angular filters
to format data 255 ■ Using Angular directives to create
HTML snippets 259

8.3 Getting data from an API 263
Using services for data 264 ■ Making HTTP requests from
Angular to an API 265 ■ Adding HTML geolocation to find
places near you 268

8.4 Ensuring forms work as expected 274
8.5 Summary 275

9 Building a single-page application with Angular:
Foundations 276
9.1 Setting the groundwork for an Angular SPA 277

Getting base files in place 278

9.2 Switching from Express routing to Angular routing 279
Switching off the Express routing 279 ■ Adding ngRoute
(angular-route) to the application 282

9.3 Adding the first views, controllers, and services 284
Creating an Angular view 284 ■ Adding a controller
to a route 286 ■ Controller best practice: Using the
controllerAs syntax 288 ■ Using services 291
Using filters and directives 294

CONTENTS xiii

9.4 Improving browser performance 297
Wrap each file in an IIFE 298 ■ Manually injecting dependencies
to protect against minification 299 ■ Using UglifyJS to minify and
concatenate scripts 300

9.5 Summary 303

10 Building an SPA with Angular: The next level 304
10.1 A full SPA: Removing reliance on the server-side

application 305
Creating an isolated HTML host page 305
Making reusable page framework directives 307
Removing the # from URLs 312

10.2 Adding additional pages and dynamically
injecting HTML 314
Adding a new route and page to the SPA 315
Creating a filter to transform the line breaks 317
Sending HTML through an Angular binding 319

10.3 More complex views and routing parameters 321
Getting the page framework in place 321 ■ Using URL
parameters in controllers and services 323 ■ Building the
Details page view 326

10.4 Using AngularUI components to create a modal
popup 330
Getting AngularUI in place 330 ■ Adding and using a click
handler 332 ■ Creating a Bootstrap modal with AngularUI 333
Passing data into the modal 335 ■ Using the form to submit
a review 337

10.5 Summary 345

PART 4 MANAGING AUTHENTICATION AND
USER SESSIONS...347

11 Authenticating users, managing sessions, and securing APIs 349
11.1 How to approach authentication in the MEAN stack 350

Traditional server-based application approach 350 ■ Full MEAN
stack approach 352

CONTENTSxiv

11.2 Creating a user schema for MongoDB 354
One-way password encryption: Hashes and salts 354 ■ Building
the Mongoose schema 354 ■ Setting encrypted paths using
Mongoose methods 355 ■ Validating a submitted password 357
Generating a JSON Web Token 357

11.3 Creating an authentication API with Passport 360
Installing and configuring Passport 360 ■ Creating API
endpoints to return JSON Web Tokens 363

11.4 Securing relevant API endpoints 368
Adding authentication middleware to Express routes 368
Using the JWT information inside a controller 369

11.5 Creating Angular authentication service 373
Managing a user session in Angular 373 ■ Allowing users to
sign up, sign in, and sign out 374 ■ Using the JWT data in
the Angular service 375

11.6 Creating register and login pages 377
Building the register page 377 ■ Building the login page 380

11.7 Working with authentication in the Angular app 383
Updating navigation 383 ■ Adding user data to a review 386

11.8 Summary 389

appendix A Installing the stack 391
appendix B Installing and preparing the supporting cast 395
appendix C Dealing with all of the views 399
appendix D Reintroducing JavaScript available online only

index 405

http://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node

